Spaces:
Runtime error
Runtime error
import dataclasses | |
import datetime | |
from collections import defaultdict, deque | |
from decimal import Decimal | |
from enum import Enum | |
from ipaddress import ( | |
IPv4Address, | |
IPv4Interface, | |
IPv4Network, | |
IPv6Address, | |
IPv6Interface, | |
IPv6Network, | |
) | |
from pathlib import Path, PurePath | |
from re import Pattern | |
from types import GeneratorType | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union | |
from uuid import UUID | |
from fastapi.types import IncEx | |
from pydantic import BaseModel | |
from pydantic.color import Color | |
from pydantic.networks import AnyUrl, NameEmail | |
from pydantic.types import SecretBytes, SecretStr | |
from typing_extensions import Annotated, Doc | |
from ._compat import PYDANTIC_V2, UndefinedType, Url, _model_dump | |
# Taken from Pydantic v1 as is | |
def isoformat(o: Union[datetime.date, datetime.time]) -> str: | |
return o.isoformat() | |
# Taken from Pydantic v1 as is | |
# TODO: pv2 should this return strings instead? | |
def decimal_encoder(dec_value: Decimal) -> Union[int, float]: | |
""" | |
Encodes a Decimal as int of there's no exponent, otherwise float | |
This is useful when we use ConstrainedDecimal to represent Numeric(x,0) | |
where a integer (but not int typed) is used. Encoding this as a float | |
results in failed round-tripping between encode and parse. | |
Our Id type is a prime example of this. | |
>>> decimal_encoder(Decimal("1.0")) | |
1.0 | |
>>> decimal_encoder(Decimal("1")) | |
1 | |
""" | |
if dec_value.as_tuple().exponent >= 0: # type: ignore[operator] | |
return int(dec_value) | |
else: | |
return float(dec_value) | |
ENCODERS_BY_TYPE: Dict[Type[Any], Callable[[Any], Any]] = { | |
bytes: lambda o: o.decode(), | |
Color: str, | |
datetime.date: isoformat, | |
datetime.datetime: isoformat, | |
datetime.time: isoformat, | |
datetime.timedelta: lambda td: td.total_seconds(), | |
Decimal: decimal_encoder, | |
Enum: lambda o: o.value, | |
frozenset: list, | |
deque: list, | |
GeneratorType: list, | |
IPv4Address: str, | |
IPv4Interface: str, | |
IPv4Network: str, | |
IPv6Address: str, | |
IPv6Interface: str, | |
IPv6Network: str, | |
NameEmail: str, | |
Path: str, | |
Pattern: lambda o: o.pattern, | |
SecretBytes: str, | |
SecretStr: str, | |
set: list, | |
UUID: str, | |
Url: str, | |
AnyUrl: str, | |
} | |
def generate_encoders_by_class_tuples( | |
type_encoder_map: Dict[Any, Callable[[Any], Any]], | |
) -> Dict[Callable[[Any], Any], Tuple[Any, ...]]: | |
encoders_by_class_tuples: Dict[Callable[[Any], Any], Tuple[Any, ...]] = defaultdict( | |
tuple | |
) | |
for type_, encoder in type_encoder_map.items(): | |
encoders_by_class_tuples[encoder] += (type_,) | |
return encoders_by_class_tuples | |
encoders_by_class_tuples = generate_encoders_by_class_tuples(ENCODERS_BY_TYPE) | |
def jsonable_encoder( | |
obj: Annotated[ | |
Any, | |
Doc( | |
""" | |
The input object to convert to JSON. | |
""" | |
), | |
], | |
include: Annotated[ | |
Optional[IncEx], | |
Doc( | |
""" | |
Pydantic's `include` parameter, passed to Pydantic models to set the | |
fields to include. | |
""" | |
), | |
] = None, | |
exclude: Annotated[ | |
Optional[IncEx], | |
Doc( | |
""" | |
Pydantic's `exclude` parameter, passed to Pydantic models to set the | |
fields to exclude. | |
""" | |
), | |
] = None, | |
by_alias: Annotated[ | |
bool, | |
Doc( | |
""" | |
Pydantic's `by_alias` parameter, passed to Pydantic models to define if | |
the output should use the alias names (when provided) or the Python | |
attribute names. In an API, if you set an alias, it's probably because you | |
want to use it in the result, so you probably want to leave this set to | |
`True`. | |
""" | |
), | |
] = True, | |
exclude_unset: Annotated[ | |
bool, | |
Doc( | |
""" | |
Pydantic's `exclude_unset` parameter, passed to Pydantic models to define | |
if it should exclude from the output the fields that were not explicitly | |
set (and that only had their default values). | |
""" | |
), | |
] = False, | |
exclude_defaults: Annotated[ | |
bool, | |
Doc( | |
""" | |
Pydantic's `exclude_defaults` parameter, passed to Pydantic models to define | |
if it should exclude from the output the fields that had the same default | |
value, even when they were explicitly set. | |
""" | |
), | |
] = False, | |
exclude_none: Annotated[ | |
bool, | |
Doc( | |
""" | |
Pydantic's `exclude_none` parameter, passed to Pydantic models to define | |
if it should exclude from the output any fields that have a `None` value. | |
""" | |
), | |
] = False, | |
custom_encoder: Annotated[ | |
Optional[Dict[Any, Callable[[Any], Any]]], | |
Doc( | |
""" | |
Pydantic's `custom_encoder` parameter, passed to Pydantic models to define | |
a custom encoder. | |
""" | |
), | |
] = None, | |
sqlalchemy_safe: Annotated[ | |
bool, | |
Doc( | |
""" | |
Exclude from the output any fields that start with the name `_sa`. | |
This is mainly a hack for compatibility with SQLAlchemy objects, they | |
store internal SQLAlchemy-specific state in attributes named with `_sa`, | |
and those objects can't (and shouldn't be) serialized to JSON. | |
""" | |
), | |
] = True, | |
) -> Any: | |
""" | |
Convert any object to something that can be encoded in JSON. | |
This is used internally by FastAPI to make sure anything you return can be | |
encoded as JSON before it is sent to the client. | |
You can also use it yourself, for example to convert objects before saving them | |
in a database that supports only JSON. | |
Read more about it in the | |
[FastAPI docs for JSON Compatible Encoder](https://fastapi.tiangolo.com/tutorial/encoder/). | |
""" | |
custom_encoder = custom_encoder or {} | |
if custom_encoder: | |
if type(obj) in custom_encoder: | |
return custom_encoder[type(obj)](obj) | |
else: | |
for encoder_type, encoder_instance in custom_encoder.items(): | |
if isinstance(obj, encoder_type): | |
return encoder_instance(obj) | |
if include is not None and not isinstance(include, (set, dict)): | |
include = set(include) | |
if exclude is not None and not isinstance(exclude, (set, dict)): | |
exclude = set(exclude) | |
if isinstance(obj, BaseModel): | |
# TODO: remove when deprecating Pydantic v1 | |
encoders: Dict[Any, Any] = {} | |
if not PYDANTIC_V2: | |
encoders = getattr(obj.__config__, "json_encoders", {}) # type: ignore[attr-defined] | |
if custom_encoder: | |
encoders.update(custom_encoder) | |
obj_dict = _model_dump( | |
obj, | |
mode="json", | |
include=include, | |
exclude=exclude, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_none=exclude_none, | |
exclude_defaults=exclude_defaults, | |
) | |
if "__root__" in obj_dict: | |
obj_dict = obj_dict["__root__"] | |
return jsonable_encoder( | |
obj_dict, | |
exclude_none=exclude_none, | |
exclude_defaults=exclude_defaults, | |
# TODO: remove when deprecating Pydantic v1 | |
custom_encoder=encoders, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |
if dataclasses.is_dataclass(obj): | |
obj_dict = dataclasses.asdict(obj) | |
return jsonable_encoder( | |
obj_dict, | |
include=include, | |
exclude=exclude, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
custom_encoder=custom_encoder, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |
if isinstance(obj, Enum): | |
return obj.value | |
if isinstance(obj, PurePath): | |
return str(obj) | |
if isinstance(obj, (str, int, float, type(None))): | |
return obj | |
if isinstance(obj, UndefinedType): | |
return None | |
if isinstance(obj, dict): | |
encoded_dict = {} | |
allowed_keys = set(obj.keys()) | |
if include is not None: | |
allowed_keys &= set(include) | |
if exclude is not None: | |
allowed_keys -= set(exclude) | |
for key, value in obj.items(): | |
if ( | |
( | |
not sqlalchemy_safe | |
or (not isinstance(key, str)) | |
or (not key.startswith("_sa")) | |
) | |
and (value is not None or not exclude_none) | |
and key in allowed_keys | |
): | |
encoded_key = jsonable_encoder( | |
key, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_none=exclude_none, | |
custom_encoder=custom_encoder, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |
encoded_value = jsonable_encoder( | |
value, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_none=exclude_none, | |
custom_encoder=custom_encoder, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |
encoded_dict[encoded_key] = encoded_value | |
return encoded_dict | |
if isinstance(obj, (list, set, frozenset, GeneratorType, tuple, deque)): | |
encoded_list = [] | |
for item in obj: | |
encoded_list.append( | |
jsonable_encoder( | |
item, | |
include=include, | |
exclude=exclude, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
custom_encoder=custom_encoder, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |
) | |
return encoded_list | |
if type(obj) in ENCODERS_BY_TYPE: | |
return ENCODERS_BY_TYPE[type(obj)](obj) | |
for encoder, classes_tuple in encoders_by_class_tuples.items(): | |
if isinstance(obj, classes_tuple): | |
return encoder(obj) | |
try: | |
data = dict(obj) | |
except Exception as e: | |
errors: List[Exception] = [] | |
errors.append(e) | |
try: | |
data = vars(obj) | |
except Exception as e: | |
errors.append(e) | |
raise ValueError(errors) from e | |
return jsonable_encoder( | |
data, | |
include=include, | |
exclude=exclude, | |
by_alias=by_alias, | |
exclude_unset=exclude_unset, | |
exclude_defaults=exclude_defaults, | |
exclude_none=exclude_none, | |
custom_encoder=custom_encoder, | |
sqlalchemy_safe=sqlalchemy_safe, | |
) | |