Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import torch | |
import re | |
import spaces | |
def split_into_sentences(text): | |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s') | |
sentences = sentence_endings.split(text) | |
return [sentence.strip() for sentence in sentences if sentence] | |
def process_paragraph(paragraph, progress=gr.Progress()): | |
sentences = split_into_sentences(paragraph) | |
results = [] | |
total_sentences = len(sentences) | |
for i, sentence in enumerate(sentences): | |
progress((i + 1) / total_sentences) | |
messages.append({"role": "user", "content": sentence}) | |
sentence_response = "" | |
inputs = tokenizer(sentence, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
output = model.generate(**inputs, max_new_tokens=300, temperature=0.7, top_p=0.9, top_k=50) | |
sentence_response = tokenizer.decode(output[0], skip_special_tokens=True) | |
category = sentence_response.strip().lower().replace(' ', '_') | |
if category != "fair": | |
results.append((sentence, category)) | |
else: | |
results.append((sentence, "fair")) | |
messages.append({"role": "assistant", "content": sentence_response}) | |
torch.cuda.empty_cache() | |
return results | |
# Load model and tokenizer | |
model_name = "princeton-nlp/Llama-3-Instruct-8B-SimPO" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
messages = [] | |
# Define label to color mapping | |
label_to_color = { | |
"fair": "green", | |
"limitation_of_liability": "red", | |
"unilateral_termination": "orange", | |
"unilateral_change": "yellow", | |
"content_removal": "purple", | |
"contract_by_using": "blue", | |
"choice_of_law": "cyan", | |
"jurisdiction": "magenta", | |
"arbitration": "brown", | |
} | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...") | |
btn = gr.Button("Process") | |
with gr.Column(): | |
output = gr.HighlightedText(label="Processed Paragraph", color_map=label_to_color) | |
progress = gr.Progress() | |
def on_click(paragraph): | |
results = process_paragraph(paragraph, progress=progress) | |
return results | |
btn.click(on_click, inputs=input_text, outputs=[output]) | |
demo.launch(share=True) | |