StevenChen16's picture
Update app.py
ab96ee1 verified
raw
history blame
3.89 kB
# 配置环境
import subprocess
# 克隆GitHub仓库
subprocess.run(["git", "clone", "https://github.com/hiyouga/LLaMA-Factory.git"], check=True)
# 切换到仓库目录
import os
os.chdir("LLaMA-Factory")
# 列出目录内容
subprocess.run(["ls"], check=True)
# 安装unsloth
subprocess.run(["pip", "install", "unsloth[colab-new]@git+https://github.com/unslothai/unsloth.git"], check=True)
# 安装xformers
subprocess.run(["pip", "install", "-U", "xformers==0.0.25"], check=True)
# 安装当前目录下的依赖
subprocess.run(["pip", "install", ".[torch,bitsandbytes]"], check=True)
import gradio as gr
from llamafactory.chat import ChatModel
from llamafactory.extras.misc import torch_gc
import re
import spaces
from threading import Thread
def split_into_sentences(text):
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s')
sentences = sentence_endings.split(text)
return [sentence.strip() for sentence in sentences if sentence]
@spaces.GPU(duration=120)
def process_sentence(sentence, index, results, messages, progress, total_sentences):
messages.append({"role": "user", "content": sentence})
sentence_response = ""
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300):
sentence_response += new_text.strip()
category = sentence_response.strip().lower().replace(' ', '_')
if category != "fair":
results[index] = (sentence, category)
else:
results[index] = (sentence, "fair")
messages.append({"role": "assistant", "content": sentence_response})
torch_gc()
progress((index + 1) / total_sentences)
@spaces.GPU(duration=120)
def process_paragraph(paragraph, progress=gr.Progress()):
sentences = split_into_sentences(paragraph)
results = [None] * len(sentences)
total_sentences = len(sentences)
threads = []
for i, sentence in enumerate(sentences):
thread = Thread(target=process_sentence, args=(sentence, i, results, messages.copy(), progress, total_sentences))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
return results
args = dict(
model_name_or_path="princeton-nlp/Llama-3-Instruct-8B-SimPO", # 使用量化的 Llama-3-8B-Instruct 模型
# model_name_or_path="StevenChen16/llama3-8b-compliance-review",
# adapter_name_or_path="StevenChen16/llama3-8b-compliance-review-adapter", # 加载保存的 LoRA 适配器
template="llama3", # 与训练时使用的模板相同
finetuning_type="lora", # 与训练时使用的微调类型相同
quantization_bit=8, # 加载 8-bit 量化模型
use_unsloth=True, # 使用 UnslothAI 的 LoRA 优化以加速生成
)
chat_model = ChatModel(args)
messages = []
# 定义类型到颜色的映射
label_to_color = {
"fair": "green",
"limitation_of_liability": "red",
"unilateral_termination": "orange",
"unilateral_change": "yellow",
"content_removal": "purple",
"contract_by_using": "blue",
"choice_of_law": "cyan",
"jurisdiction": "magenta",
"arbitration": "brown",
}
with gr.Blocks() as demo:
with gr.Row(equal_height=True):
with gr.Column():
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...")
btn = gr.Button("Process")
with gr.Column():
output = gr.HighlightedText(label="Processed Paragraph", color_map=label_to_color)
progress = gr.Progress()
def on_click(paragraph):
results = process_paragraph(paragraph, progress=progress)
return results
btn.click(on_click, inputs=input_text, outputs=[output])
demo.launch(share=True)