Spaces:
Running
on
Zero
Running
on
Zero
StevenChen16
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from llamafactory.chat import ChatModel
|
3 |
+
from llamafactory.extras.misc import torch_gc
|
4 |
+
import re
|
5 |
+
import space
|
6 |
+
|
7 |
+
def split_into_sentences(text):
|
8 |
+
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s')
|
9 |
+
sentences = sentence_endings.split(text)
|
10 |
+
return [sentence.strip() for sentence in sentences if sentence]
|
11 |
+
|
12 |
+
@space.GPU
|
13 |
+
def process_paragraph(paragraph, progress=gr.Progress()):
|
14 |
+
sentences = split_into_sentences(paragraph)
|
15 |
+
results = []
|
16 |
+
total_sentences = len(sentences)
|
17 |
+
for i, sentence in enumerate(sentences):
|
18 |
+
progress((i + 1) / total_sentences)
|
19 |
+
messages.append({"role": "user", "content": sentence})
|
20 |
+
sentence_response = ""
|
21 |
+
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300):
|
22 |
+
sentence_response += new_text.strip()
|
23 |
+
category = sentence_response.strip().lower().replace(' ', '_')
|
24 |
+
if category != "fair":
|
25 |
+
results.append((sentence, category))
|
26 |
+
else:
|
27 |
+
results.append((sentence, "fair"))
|
28 |
+
messages.append({"role": "assistant", "content": sentence_response})
|
29 |
+
torch_gc()
|
30 |
+
return results
|
31 |
+
|
32 |
+
args = dict(
|
33 |
+
model_name_or_path="princeton-nlp/Llama-3-Instruct-8B-SimPO", # 使用量化的 Llama-3-8B-Instruct 模型
|
34 |
+
adapter_name_or_path="StevenChen16/llama3-8b-compliance-review", # 加载保存的 LoRA 适配器
|
35 |
+
template="llama3", # 与训练时使用的模板相同
|
36 |
+
finetuning_type="lora", # 与训练时使用的微调类型相同
|
37 |
+
quantization_bit=8, # 加载 4-bit 量化模型
|
38 |
+
use_unsloth=True, # 使用 UnslothAI 的 LoRA 优化以加速生成
|
39 |
+
)
|
40 |
+
chat_model = ChatModel(args)
|
41 |
+
messages = []
|
42 |
+
|
43 |
+
# 定义类型到颜色的映射
|
44 |
+
label_to_color = {
|
45 |
+
"fair": "green",
|
46 |
+
"limitation_of_liability": "red",
|
47 |
+
"unilateral_termination": "orange",
|
48 |
+
"unilateral_change": "yellow",
|
49 |
+
"content_removal": "purple",
|
50 |
+
"contract_by_using": "blue",
|
51 |
+
"choice_of_law": "cyan",
|
52 |
+
"jurisdiction": "magenta",
|
53 |
+
"arbitration": "brown",
|
54 |
+
}
|
55 |
+
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
|
58 |
+
with gr.Row(equal_height=True):
|
59 |
+
with gr.Column():
|
60 |
+
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...")
|
61 |
+
btn = gr.Button("Process")
|
62 |
+
with gr.Column():
|
63 |
+
output = gr.HighlightedText(label="Processed Paragraph", color_map=label_to_color)
|
64 |
+
progress = gr.Progress()
|
65 |
+
|
66 |
+
def on_click(paragraph):
|
67 |
+
results = process_paragraph(paragraph, progress=progress)
|
68 |
+
return results
|
69 |
+
|
70 |
+
btn.click(on_click, inputs=input_text, outputs=[output])
|
71 |
+
|
72 |
+
demo.launch()
|