Spaces:
Running
on
Zero
Running
on
Zero
StevenChen16
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,6 @@ subprocess.run(["git", "clone", "https://github.com/hiyouga/LLaMA-Factory.git"],
|
|
5 |
# 切换到仓库目录
|
6 |
import os
|
7 |
os.chdir("LLaMA-Factory")
|
8 |
-
# 列出目录内容
|
9 |
-
subprocess.run(["ls"], check=True)
|
10 |
# 安装unsloth
|
11 |
subprocess.run(["pip", "install", "unsloth[colab-new]@git+https://github.com/unslothai/unsloth.git"], check=True)
|
12 |
# 安装xformers
|
@@ -20,56 +18,41 @@ import gradio as gr
|
|
20 |
from llamafactory.chat import ChatModel
|
21 |
from llamafactory.extras.misc import torch_gc
|
22 |
import re
|
23 |
-
import spaces
|
24 |
-
from threading import Thread
|
25 |
-
|
26 |
-
|
27 |
|
28 |
def split_into_sentences(text):
|
29 |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s')
|
30 |
sentences = sentence_endings.split(text)
|
31 |
return [sentence.strip() for sentence in sentences if sentence]
|
32 |
|
33 |
-
@spaces.GPU(duration=120)
|
34 |
-
def process_sentence(sentence, index, results, messages, progress, total_sentences):
|
35 |
-
messages.append({"role": "user", "content": sentence})
|
36 |
-
sentence_response = ""
|
37 |
-
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300):
|
38 |
-
sentence_response += new_text.strip()
|
39 |
-
category = sentence_response.strip().lower().replace(' ', '_')
|
40 |
-
if category != "fair":
|
41 |
-
results[index] = (sentence, category)
|
42 |
-
else:
|
43 |
-
results[index] = (sentence, "fair")
|
44 |
-
messages.append({"role": "assistant", "content": sentence_response})
|
45 |
-
torch_gc()
|
46 |
-
progress((index + 1) / total_sentences)
|
47 |
-
|
48 |
-
@spaces.GPU(duration=120)
|
49 |
def process_paragraph(paragraph, progress=gr.Progress()):
|
50 |
sentences = split_into_sentences(paragraph)
|
51 |
-
results = [
|
52 |
total_sentences = len(sentences)
|
53 |
-
threads = []
|
54 |
-
|
55 |
for i, sentence in enumerate(sentences):
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
return results
|
64 |
|
|
|
|
|
65 |
args = dict(
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
)
|
74 |
chat_model = ChatModel(args)
|
75 |
messages = []
|
@@ -88,6 +71,7 @@ label_to_color = {
|
|
88 |
}
|
89 |
|
90 |
with gr.Blocks() as demo:
|
|
|
91 |
with gr.Row(equal_height=True):
|
92 |
with gr.Column():
|
93 |
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...")
|
@@ -102,4 +86,4 @@ with gr.Blocks() as demo:
|
|
102 |
|
103 |
btn.click(on_click, inputs=input_text, outputs=[output])
|
104 |
|
105 |
-
demo.launch(share=True)
|
|
|
5 |
# 切换到仓库目录
|
6 |
import os
|
7 |
os.chdir("LLaMA-Factory")
|
|
|
|
|
8 |
# 安装unsloth
|
9 |
subprocess.run(["pip", "install", "unsloth[colab-new]@git+https://github.com/unslothai/unsloth.git"], check=True)
|
10 |
# 安装xformers
|
|
|
18 |
from llamafactory.chat import ChatModel
|
19 |
from llamafactory.extras.misc import torch_gc
|
20 |
import re
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def split_into_sentences(text):
|
23 |
sentence_endings = re.compile(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?|\!)\s')
|
24 |
sentences = sentence_endings.split(text)
|
25 |
return [sentence.strip() for sentence in sentences if sentence]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def process_paragraph(paragraph, progress=gr.Progress()):
|
28 |
sentences = split_into_sentences(paragraph)
|
29 |
+
results = []
|
30 |
total_sentences = len(sentences)
|
|
|
|
|
31 |
for i, sentence in enumerate(sentences):
|
32 |
+
progress((i + 1) / total_sentences)
|
33 |
+
messages.append({"role": "user", "content": sentence})
|
34 |
+
sentence_response = ""
|
35 |
+
for new_text in chat_model.stream_chat(messages, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=300):
|
36 |
+
sentence_response += new_text.strip()
|
37 |
+
category = sentence_response.strip().lower().replace(' ', '_')
|
38 |
+
if category != "fair":
|
39 |
+
results.append((sentence, category))
|
40 |
+
else:
|
41 |
+
results.append((sentence, "fair"))
|
42 |
+
messages.append({"role": "assistant", "content": sentence_response})
|
43 |
+
torch_gc()
|
44 |
return results
|
45 |
|
46 |
+
%cd /root/autodl-tmp/LLaMA-Factory/
|
47 |
+
|
48 |
args = dict(
|
49 |
+
model_name_or_path="princeton-nlp/Llama-3-Instruct-8B-SimPO", # 使用量化的 Llama-3-8B-Instruct 模型
|
50 |
+
# model_name_or_path="StevenChen16/llama3-8b-compliance-review",
|
51 |
+
adapter_name_or_path="StevenChen16/llama3-8b-compliance-review-adapter", # 加载保存的 LoRA 适配器
|
52 |
+
template="llama3", # 与训练时使用的模板相同
|
53 |
+
finetuning_type="lora", # 与训练时使用的微调类型相同
|
54 |
+
quantization_bit=8, # 加载 4-bit 量化模型
|
55 |
+
use_unsloth=True, # 使用 UnslothAI 的 LoRA 优化以加速生成
|
56 |
)
|
57 |
chat_model = ChatModel(args)
|
58 |
messages = []
|
|
|
71 |
}
|
72 |
|
73 |
with gr.Blocks() as demo:
|
74 |
+
|
75 |
with gr.Row(equal_height=True):
|
76 |
with gr.Column():
|
77 |
input_text = gr.Textbox(label="Input Paragraph", lines=10, placeholder="Enter the paragraph here...")
|
|
|
86 |
|
87 |
btn.click(on_click, inputs=input_text, outputs=[output])
|
88 |
|
89 |
+
demo.launch(share=True)
|