import os import sys import re import uuid import tempfile import json from argparse import ArgumentParser from threading import Thread from queue import Queue import torch import torchaudio import gradio as gr import whisper from transformers import ( WhisperFeatureExtractor, AutoTokenizer, AutoModel, AutoModelForCausalLM ) from transformers.generation.streamers import BaseStreamer from speech_tokenizer.modeling_whisper import WhisperVQEncoder from speech_tokenizer.utils import extract_speech_token # Add local paths sys.path.insert(0, "./cosyvoice") sys.path.insert(0, "./third_party/Matcha-TTS") from flow_inference import AudioDecoder # RAG imports from langchain_community.document_loaders import * from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.vectorstores.faiss import FAISS from langchain_huggingface import HuggingFaceEmbeddings from tqdm import tqdm import joblib # Token streamer for generation class TokenStreamer(BaseStreamer): def __init__(self, skip_prompt: bool = False, timeout=None): self.skip_prompt = skip_prompt self.token_queue = Queue() self.stop_signal = None self.next_tokens_are_prompt = True self.timeout = timeout def put(self, value): if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return for token in value.tolist(): self.token_queue.put(token) def end(self): self.token_queue.put(self.stop_signal) def __iter__(self): return self def __next__(self): value = self.token_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value # File loader mapping LOADER_MAPPING = { '.pdf': PyPDFLoader, '.txt': TextLoader, '.md': UnstructuredMarkdownLoader, '.csv': CSVLoader, '.jpg': UnstructuredImageLoader, '.jpeg': UnstructuredImageLoader, '.png': UnstructuredImageLoader, '.json': JSONLoader, '.html': BSHTMLLoader, '.htm': BSHTMLLoader } def load_single_file(file_path): _, ext = os.path.splitext(file_path) ext = ext.lower() loader_class = LOADER_MAPPING.get(ext) if not loader_class: print(f"Unsupported file type: {ext}") return None loader = loader_class(file_path) docs = list(loader.lazy_load()) return docs def load_files(file_paths: list): if not file_paths: return [] docs = [] for file_path in tqdm(file_paths): print("Loading docs:", file_path) loaded_docs = load_single_file(file_path) if loaded_docs: docs.extend(loaded_docs) return docs def split_text(txt, chunk_size=200, overlap=20): if not txt: return None splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=overlap) docs = splitter.split_documents(txt) return docs def create_embedding_model(model_file): embedding = HuggingFaceEmbeddings(model_name=model_file, model_kwargs={'trust_remote_code': True}) return embedding def save_file_paths(store_path, file_paths): joblib.dump(file_paths, f'{store_path}/file_paths.pkl') def load_file_paths(store_path): file_paths_file = f'{store_path}/file_paths.pkl' if os.path.exists(file_paths_file): return joblib.load(file_paths_file) return None def file_paths_match(store_path, file_paths): saved_file_paths = load_file_paths(store_path) return saved_file_paths == file_paths def create_vector_store(docs, store_file, embeddings): vector_store = FAISS.from_documents(docs, embeddings) vector_store.save_local(store_file) return vector_store def load_vector_store(store_path, embeddings): if os.path.exists(store_path): vector_store = FAISS.load_local(store_path, embeddings, allow_dangerous_deserialization=True) return vector_store else: return None def load_or_create_store(store_path, file_paths, embeddings): if os.path.exists(store_path) and file_paths_match(store_path, file_paths): print("Vector database is consistent with last use, no need to rewrite") vector_store = load_vector_store(store_path, embeddings) if vector_store: return vector_store print("Rewriting database") pages = load_files(file_paths) docs = split_text(pages) vector_store = create_vector_store(docs, store_path, embeddings) save_file_paths(store_path, file_paths) return vector_store def query_vector_store(vector_store: FAISS, query, k=4, relevance_threshold=0.8): retriever = vector_store.as_retriever( search_type="similarity_score_threshold", search_kwargs={"score_threshold": relevance_threshold, "k": k} ) similar_docs = retriever.invoke(query) context = [doc.page_content for doc in similar_docs] return context class ModelWorker: def __init__(self, model_path, device='cuda'): self.device = device self.glm_model = AutoModel.from_pretrained( model_path, trust_remote_code=True, device=device ).to(device).eval() self.glm_tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True ) @torch.inference_mode() def generate_stream(self, params): prompt = params["prompt"] temperature = float(params.get("temperature", 1.0)) top_p = float(params.get("top_p", 1.0)) max_new_tokens = int(params.get("max_new_tokens", 256)) inputs = self.glm_tokenizer([prompt], return_tensors="pt") inputs = inputs.to(self.device) streamer = TokenStreamer(skip_prompt=True) thread = Thread( target=self.glm_model.generate, kwargs=dict( **inputs, max_new_tokens=int(max_new_tokens), temperature=float(temperature), top_p=float(top_p), streamer=streamer ) ) thread.start() for token_id in streamer: yield token_id def generate_stream_gate(self, params): try: for x in self.generate_stream(params): yield x except Exception as e: print("Caught Unknown Error", e) ret = "Server Error" yield ret def initialize_embedding_model_and_vector_store(Embedding_Model, store_path, file_paths): embedding_model = create_embedding_model(Embedding_Model) vector_store = load_or_create_store(store_path, file_paths, embedding_model) return vector_store, embedding_model def handle_file_upload(files): if not files: return None file_paths = [file.name for file in files] return file_paths def reinitialize_database(files, progress=gr.Progress()): global vector_store, embedding_model if not files: return "No files uploaded. Please upload files first." file_paths = [file.name for file in files] progress(0, desc="Initializing embedding model...") embedding_model = create_embedding_model(Embedding_Model) progress(0.3, desc="Loading documents...") pages = load_files(file_paths) progress(0.5, desc="Splitting text...") docs = split_text(pages) progress(0.7, desc="Creating vector store...") vector_store = create_vector_store(docs, store_path, embedding_model) save_file_paths(store_path, file_paths) return "Database reinitialized successfully!" if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default="7860") parser.add_argument("--flow-path", type=str, default="./glm-4-voice-decoder") parser.add_argument("--model-path", type=str, default="./weights") parser.add_argument("--tokenizer-path", type=str, default="./glm-4-voice-tokenizer") parser.add_argument("--whisper_model", type=str, default="/root/autodl-tmp/whisper/base") parser.add_argument("--share", action='store_true') args = parser.parse_args() # Define model configurations flow_config = os.path.join(args.flow_path, "config.yaml") flow_checkpoint = os.path.join(args.flow_path, 'flow.pt') hift_checkpoint = os.path.join(args.flow_path, 'hift.pt') device = "cuda" # Global variables audio_decoder = None whisper_model = None feature_extractor = None glm_model = None glm_tokenizer = None vector_store = None embedding_model = None whisper_transcribe_model = None model_worker = None # RAG configuration Embedding_Model = '/root/autodl-tmp/rag/multilingual-e5-large-instruct' file_paths = ['/root/autodl-tmp/rag/me.txt', "/root/autodl-tmp/rag/2024-Wealth-Outlook-MidYear-Edition.pdf"] store_path = '/root/autodl-tmp/rag/me.faiss' def initialize_fn(): global audio_decoder, feature_extractor, whisper_model, glm_model, glm_tokenizer global vector_store, embedding_model, whisper_transcribe_model, model_worker if audio_decoder is not None: return model_worker = ModelWorker(args.model_path, device) glm_tokenizer = model_worker.glm_tokenizer audio_decoder = AudioDecoder( config_path=flow_config, flow_ckpt_path=flow_checkpoint, hift_ckpt_path=hift_checkpoint, device=device ) whisper_model = WhisperVQEncoder.from_pretrained(args.tokenizer_path).eval().to(device) feature_extractor = WhisperFeatureExtractor.from_pretrained(args.tokenizer_path) embedding_model = create_embedding_model(Embedding_Model) vector_store = load_or_create_store(store_path, file_paths, embedding_model) whisper_transcribe_model = whisper.load_model("/root/autodl-tmp/whisper/base/base.pt") def clear_fn(): return [], [], '', '', '', None, None def inference_fn( temperature: float, top_p: float, max_new_token: int, input_mode, audio_path: str | None, input_text: str | None, history: list[dict], previous_input_tokens: str, previous_completion_tokens: str, ): global whisper_transcribe_model, vector_store using_context = False if input_mode == "audio": assert audio_path is not None history.append({"role": "user", "content": {"path": audio_path}}) audio_tokens = extract_speech_token( whisper_model, feature_extractor, [audio_path] )[0] if len(audio_tokens) == 0: raise gr.Error("No audio tokens extracted") audio_tokens = "".join([f"<|audio_{x}|>" for x in audio_tokens]) audio_tokens = "<|begin_of_audio|>" + audio_tokens + "<|end_of_audio|>" user_input = audio_tokens system_prompt = "User will provide you with a speech instruction. Do it step by step." whisper_result = whisper_transcribe_model.transcribe(audio_path) transcribed_text = whisper_result['text'] context = query_vector_store(vector_store, transcribed_text, 4, 0.7) else: assert input_text is not None history.append({"role": "user", "content": input_text}) user_input = input_text system_prompt = "User will provide you with a text instruction. Do it step by step." context = query_vector_store(vector_store, input_text, 4, 0.7) if context is not None: using_context = True inputs = previous_input_tokens + previous_completion_tokens inputs = inputs.strip() if "<|system|>" not in inputs: inputs += f"<|system|>\n{system_prompt}" if ("<|context|>" not in inputs) and (using_context == True): inputs += f"<|context|> According to the following content: {context}, Please answer the question" if "<|context|>" not in inputs and context is not None: inputs += f"<|context|>\n{context}" inputs += f"<|user|>\n{user_input}<|assistant|>streaming_transcription\n" with torch.no_grad(): text_tokens, audio_tokens = [], [] audio_offset = glm_tokenizer.convert_tokens_to_ids('<|audio_0|>') end_token_id = glm_tokenizer.convert_tokens_to_ids('<|user|>') complete_tokens = [] prompt_speech_feat = torch.zeros(1, 0, 80).to(device) flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int64).to(device) this_uuid = str(uuid.uuid4()) tts_speechs = [] tts_mels = [] prev_mel = None is_finalize = False block_size = 10 # Generate tokens using ModelWorker directly instead of API for token_id in model_worker.generate_stream_gate({ "prompt": inputs, "temperature": temperature, "top_p": top_p, "max_new_tokens": max_new_token, }): if isinstance(token_id, str): # Error case yield history, inputs, '', token_id, None, None return if token_id == end_token_id: is_finalize = True if len(audio_tokens) >= block_size or (is_finalize and audio_tokens): block_size = 20 tts_token = torch.tensor(audio_tokens, device=device).unsqueeze(0) if prev_mel is not None: prompt_speech_feat = torch.cat(tts_mels, dim=-1).transpose(1, 2) tts_speech, tts_mel = audio_decoder.token2wav( tts_token, uuid=this_uuid, prompt_token=flow_prompt_speech_token.to(device), prompt_feat=prompt_speech_feat.to(device), finalize=is_finalize ) prev_mel = tts_mel tts_speechs.append(tts_speech.squeeze()) tts_mels.append(tts_mel) yield history, inputs, '', '', (22050, tts_speech.squeeze().cpu().numpy()), None flow_prompt_speech_token = torch.cat((flow_prompt_speech_token, tts_token), dim=-1) audio_tokens = [] if not is_finalize: complete_tokens.append(token_id) if token_id >= audio_offset: audio_tokens.append(token_id - audio_offset) else: text_tokens.append(token_id) # Generate final audio and save tts_speech = torch.cat(tts_speechs, dim=-1).cpu() complete_text = glm_tokenizer.decode(complete_tokens, spaces_between_special_tokens=False) with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f: torchaudio.save(f, tts_speech.unsqueeze(0), 22050, format="wav") history.append({"role": "assistant", "content": {"path": f.name, "type": "audio/wav"}}) history.append({"role": "assistant", "content": glm_tokenizer.decode(text_tokens, ignore_special_tokens=False)}) yield history, inputs, complete_text, '', None, (22050, tts_speech.numpy()) def update_input_interface(input_mode): if input_mode == "audio": return [gr.update(visible=True), gr.update(visible=False)] else: return [gr.update(visible=False), gr.update(visible=True)] # Create Gradio interface with new layout with gr.Blocks(title="GLM-4-Voice Demo", fill_height=True) as demo: with gr.Row(): # Left column for chat interface with gr.Column(scale=2): gr.Markdown("## Chat Interface") with gr.Row(): temperature = gr.Number(label="Temperature", value=0.2, minimum=0, maximum=1) top_p = gr.Number(label="Top p", value=0.8, minimum=0, maximum=1) max_new_token = gr.Number(label="Max new tokens", value=2000, minimum=1) chatbot = gr.Chatbot( elem_id="chatbot", bubble_full_width=False, type="messages", scale=1, height=500 ) with gr.Row(): input_mode = gr.Radio( ["audio", "text"], label="Input Mode", value="audio" ) with gr.Row(): audio = gr.Audio( label="Input audio", type='filepath', show_download_button=True, visible=True ) text_input = gr.Textbox( label="Input text", placeholder="Enter your text here...", lines=2, visible=False ) with gr.Row(): submit_btn = gr.Button("Submit", variant="primary") reset_btn = gr.Button("Clear") output_audio = gr.Audio( label="Play", streaming=True, autoplay=True, show_download_button=False ) complete_audio = gr.Audio( label="Last Output Audio (If Any)", show_download_button=True ) # Right column for database management with gr.Column(scale=1): gr.Markdown("## Database Management") file_upload = gr.Files( label="Upload Database Files", file_types=[".txt", ".pdf", ".md", ".csv", ".json", ".html", ".htm"], file_count="multiple" ) reinit_btn = gr.Button("Reinitialize Database", variant="secondary") status_text = gr.Textbox(label="Status", interactive=False) history_state = gr.State([]) # Setup interaction handlers respond = submit_btn.click( inference_fn, inputs=[ temperature, top_p, max_new_token, input_mode, audio, text_input, history_state, ], outputs=[ history_state, output_audio, complete_audio ] ) respond.then(lambda s: s, [history_state], chatbot) reset_btn.click( clear_fn, outputs=[ chatbot, history_state, output_audio, complete_audio ] ) input_mode.change( update_input_interface, inputs=[input_mode], outputs=[audio, text_input] ) # Database reinitialization handler reinit_btn.click( reinitialize_database, inputs=[file_upload], outputs=[status_text] ) # Initialize models and launch interface initialize_fn() demo.launch( server_port=args.port, server_name=args.host, share=args.share )