Spaces:
Sleeping
Sleeping
StevenChen16
commited on
Commit
•
1e923d6
1
Parent(s):
4036c8e
Update app.py
Browse files
app.py
CHANGED
@@ -6,63 +6,48 @@ from transformers.pipelines.audio_utils import ffmpeg_read
|
|
6 |
import tempfile
|
7 |
import gc
|
8 |
import os
|
9 |
-
import time
|
10 |
|
11 |
# Constants
|
12 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
-
BATCH_SIZE =
|
14 |
-
COMPUTE_TYPE = "
|
15 |
-
FILE_LIMIT_MB =
|
16 |
|
17 |
-
|
18 |
-
"""Helper function to clean GPU memory"""
|
19 |
-
if torch.cuda.is_available():
|
20 |
-
torch.cuda.empty_cache()
|
21 |
-
gc.collect()
|
22 |
-
|
23 |
-
@spaces.GPU
|
24 |
def transcribe_audio(inputs, task):
|
25 |
if inputs is None:
|
26 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
27 |
|
28 |
try:
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
try:
|
36 |
audio = whisperx.load_audio(inputs)
|
37 |
-
except Exception as e:
|
38 |
-
raise gr.Error(f"Error loading audio file: {str(e)}")
|
39 |
|
40 |
# 1. Transcribe with base Whisper model
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
|
49 |
# 2. Align whisper output
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
# 3. Diarize audio
|
59 |
-
|
60 |
-
|
61 |
-
diarize_segments = diarize_model(audio)
|
62 |
-
finally:
|
63 |
-
if 'diarize_model' in locals():
|
64 |
-
del diarize_model
|
65 |
-
clean_gpu_memory()
|
66 |
|
67 |
# 4. Assign speaker labels
|
68 |
result = whisperx.assign_word_speakers(diarize_segments, result)
|
@@ -77,8 +62,12 @@ def transcribe_audio(inputs, task):
|
|
77 |
return output_text
|
78 |
|
79 |
except Exception as e:
|
80 |
-
clean_gpu_memory()
|
81 |
raise gr.Error(f"Error processing audio: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Create Gradio interface
|
84 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
@@ -91,7 +80,7 @@ with demo:
|
|
91 |
audio_input = gr.Audio(
|
92 |
sources=["microphone", "upload"],
|
93 |
type="filepath",
|
94 |
-
label=
|
95 |
)
|
96 |
task = gr.Radio(
|
97 |
["transcribe", "translate"],
|
@@ -107,17 +96,15 @@ with demo:
|
|
107 |
placeholder="Transcribed text will appear here..."
|
108 |
)
|
109 |
|
110 |
-
gr.Markdown(
|
111 |
### Features:
|
112 |
- High-accuracy transcription using WhisperX
|
113 |
- Automatic speaker diarization
|
114 |
- Support for both microphone recording and file upload
|
115 |
-
-
|
116 |
|
117 |
### Note:
|
118 |
-
|
119 |
-
- For optimal results, use clear audio with minimal background noise
|
120 |
-
- If you encounter errors, try with a shorter audio clip
|
121 |
""")
|
122 |
|
123 |
submit_button.click(
|
@@ -126,9 +113,4 @@ with demo:
|
|
126 |
outputs=output_text
|
127 |
)
|
128 |
|
129 |
-
demo.queue(
|
130 |
-
share=False,
|
131 |
-
debug=True,
|
132 |
-
show_error=True,
|
133 |
-
ssr_mode=False
|
134 |
-
)
|
|
|
6 |
import tempfile
|
7 |
import gc
|
8 |
import os
|
|
|
9 |
|
10 |
# Constants
|
11 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
BATCH_SIZE = 4 # reduce if low on GPU mem
|
13 |
+
COMPUTE_TYPE = "float32" # change to "int8" if low on GPU mem
|
14 |
+
FILE_LIMIT_MB = 1000
|
15 |
|
16 |
+
@spaces.GPU(duration=200)
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def transcribe_audio(inputs, task):
|
18 |
if inputs is None:
|
19 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
20 |
|
21 |
try:
|
22 |
+
# Load audio
|
23 |
+
if isinstance(inputs, str):
|
24 |
+
# For file path input
|
25 |
+
audio = whisperx.load_audio(inputs)
|
26 |
+
else:
|
27 |
+
# For microphone input (needs conversion)
|
|
|
28 |
audio = whisperx.load_audio(inputs)
|
|
|
|
|
29 |
|
30 |
# 1. Transcribe with base Whisper model
|
31 |
+
model = whisperx.load_model("large-v3", device=DEVICE, compute_type=COMPUTE_TYPE)
|
32 |
+
result = model.transcribe(audio, batch_size=BATCH_SIZE)
|
33 |
+
|
34 |
+
# Clear GPU memory
|
35 |
+
del model
|
36 |
+
gc.collect()
|
37 |
+
torch.cuda.empty_cache()
|
38 |
|
39 |
# 2. Align whisper output
|
40 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=DEVICE)
|
41 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio, DEVICE, return_char_alignments=False)
|
42 |
+
|
43 |
+
# Clear GPU memory again
|
44 |
+
del model_a
|
45 |
+
gc.collect()
|
46 |
+
torch.cuda.empty_cache()
|
47 |
|
48 |
# 3. Diarize audio
|
49 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token=os.environ["HF_TOKEN"], device=DEVICE)
|
50 |
+
diarize_segments = diarize_model(audio)
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# 4. Assign speaker labels
|
53 |
result = whisperx.assign_word_speakers(diarize_segments, result)
|
|
|
62 |
return output_text
|
63 |
|
64 |
except Exception as e:
|
|
|
65 |
raise gr.Error(f"Error processing audio: {str(e)}")
|
66 |
+
|
67 |
+
finally:
|
68 |
+
# Final cleanup
|
69 |
+
gc.collect()
|
70 |
+
torch.cuda.empty_cache()
|
71 |
|
72 |
# Create Gradio interface
|
73 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
|
|
80 |
audio_input = gr.Audio(
|
81 |
sources=["microphone", "upload"],
|
82 |
type="filepath",
|
83 |
+
label="Audio Input (Microphone or File Upload)"
|
84 |
)
|
85 |
task = gr.Radio(
|
86 |
["transcribe", "translate"],
|
|
|
96 |
placeholder="Transcribed text will appear here..."
|
97 |
)
|
98 |
|
99 |
+
gr.Markdown("""
|
100 |
### Features:
|
101 |
- High-accuracy transcription using WhisperX
|
102 |
- Automatic speaker diarization
|
103 |
- Support for both microphone recording and file upload
|
104 |
+
- GPU-accelerated processing
|
105 |
|
106 |
### Note:
|
107 |
+
Processing may take a few moments depending on the audio length and system resources.
|
|
|
|
|
108 |
""")
|
109 |
|
110 |
submit_button.click(
|
|
|
113 |
outputs=output_text
|
114 |
)
|
115 |
|
116 |
+
demo.queue().launch(ssr_mode=False)
|
|
|
|
|
|
|
|
|
|