Spaces:
Running
on
Zero
Running
on
Zero
StevenChen16
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,50 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
-
|
4 |
import gradio as gr
|
5 |
import yt_dlp as youtube_dl
|
6 |
-
|
7 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
-
|
9 |
import tempfile
|
10 |
import os
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
pipe = pipeline(
|
20 |
-
task="automatic-speech-recognition",
|
21 |
-
model=MODEL_NAME,
|
22 |
-
chunk_length_s=30,
|
23 |
-
device=device,
|
24 |
-
)
|
25 |
|
|
|
|
|
26 |
|
27 |
-
@spaces.GPU
|
28 |
def transcribe(inputs, task):
|
29 |
if inputs is None:
|
30 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
def _return_yt_html_embed(yt_url):
|
37 |
video_id = yt_url.split("?v=")[-1]
|
@@ -49,22 +62,11 @@ def download_yt_audio(yt_url, filename):
|
|
49 |
except youtube_dl.utils.DownloadError as err:
|
50 |
raise gr.Error(str(err))
|
51 |
|
52 |
-
file_length = info["
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
file_h_m_s.insert(0, 0)
|
58 |
-
if len(file_h_m_s) == 2:
|
59 |
-
file_h_m_s.insert(0, 0)
|
60 |
-
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
61 |
-
|
62 |
-
if file_length_s > YT_LENGTH_LIMIT_S:
|
63 |
-
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
64 |
-
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
65 |
-
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
66 |
-
|
67 |
-
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
68 |
|
69 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
70 |
try:
|
@@ -72,75 +74,27 @@ def download_yt_audio(yt_url, filename):
|
|
72 |
except youtube_dl.utils.ExtractorError as err:
|
73 |
raise gr.Error(str(err))
|
74 |
|
75 |
-
|
76 |
-
def yt_transcribe(yt_url, task, max_filesize=75.0):
|
77 |
html_embed_str = _return_yt_html_embed(yt_url)
|
78 |
-
|
79 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
80 |
-
filepath = os.path.join(tmpdirname, "video.
|
81 |
download_yt_audio(yt_url, filepath)
|
82 |
-
|
83 |
-
inputs = f.read()
|
84 |
-
|
85 |
-
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
86 |
-
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
87 |
-
|
88 |
-
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
|
89 |
|
90 |
-
return html_embed_str,
|
91 |
-
|
92 |
-
|
93 |
-
demo = gr.Blocks(theme=gr.themes.Ocean())
|
94 |
-
|
95 |
-
mf_transcribe = gr.Interface(
|
96 |
-
fn=transcribe,
|
97 |
-
inputs=[
|
98 |
-
gr.Audio(sources="microphone", type="filepath"),
|
99 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
100 |
-
],
|
101 |
-
outputs="text",
|
102 |
-
title="Whisper Large V3 Turbo: Transcribe Audio",
|
103 |
-
description=(
|
104 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
105 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
106 |
-
" of arbitrary length."
|
107 |
-
),
|
108 |
-
allow_flagging="never",
|
109 |
-
)
|
110 |
-
|
111 |
-
file_transcribe = gr.Interface(
|
112 |
-
fn=transcribe,
|
113 |
-
inputs=[
|
114 |
-
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
115 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
116 |
-
],
|
117 |
-
outputs="text",
|
118 |
-
title="Whisper Large V3: Transcribe Audio",
|
119 |
-
description=(
|
120 |
-
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
|
121 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
122 |
-
" of arbitrary length."
|
123 |
-
),
|
124 |
-
allow_flagging="never",
|
125 |
-
)
|
126 |
|
127 |
-
|
|
|
|
|
128 |
fn=yt_transcribe,
|
129 |
-
inputs=[
|
130 |
-
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
131 |
-
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
132 |
-
],
|
133 |
outputs=["html", "text"],
|
134 |
-
title="
|
135 |
-
description=
|
136 |
-
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
137 |
-
f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
|
138 |
-
" arbitrary length."
|
139 |
-
),
|
140 |
-
allow_flagging="never",
|
141 |
)
|
142 |
|
143 |
with demo:
|
144 |
-
gr.TabbedInterface([
|
145 |
|
146 |
-
demo.
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import yt_dlp as youtube_dl
|
3 |
+
import whisperx
|
|
|
|
|
4 |
import tempfile
|
5 |
import os
|
6 |
+
import torch
|
7 |
+
import gc
|
8 |
|
9 |
+
# WhisperX配置
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
batch_size = 4
|
12 |
+
compute_type = "float32"
|
13 |
+
MODEL_NAME = "large-v3"
|
14 |
+
YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube files
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# 加载WhisperX模型
|
17 |
+
model = whisperx.load_model(MODEL_NAME, device=device, compute_type=compute_type)
|
18 |
|
|
|
19 |
def transcribe(inputs, task):
|
20 |
if inputs is None:
|
21 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
22 |
+
|
23 |
+
# 加载和转录音频
|
24 |
+
audio = whisperx.load_audio(inputs)
|
25 |
+
result = model.transcribe(audio, batch_size=batch_size)
|
26 |
+
print(result["segments"]) # 未对齐的文本片段
|
27 |
+
|
28 |
+
# 释放资源以节省GPU内存
|
29 |
+
gc.collect()
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
del model
|
32 |
+
|
33 |
+
# 加载对齐模型
|
34 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
35 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
|
36 |
|
37 |
+
# 说话人分离
|
38 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token="your_huggingface_token", device=device)
|
39 |
+
result = whisperx.assign_word_speakers(diarize_model, result)
|
40 |
+
|
41 |
+
# 格式化输出
|
42 |
+
transcript = ""
|
43 |
+
for segment in result['segments']:
|
44 |
+
speaker = segment.get('speaker', 'Unknown')
|
45 |
+
transcript += f"{speaker}: {segment['text']}\n"
|
46 |
+
|
47 |
+
return transcript
|
48 |
|
49 |
def _return_yt_html_embed(yt_url):
|
50 |
video_id = yt_url.split("?v=")[-1]
|
|
|
62 |
except youtube_dl.utils.DownloadError as err:
|
63 |
raise gr.Error(str(err))
|
64 |
|
65 |
+
file_length = info["duration"]
|
66 |
+
if file_length > YT_LENGTH_LIMIT_S:
|
67 |
+
raise gr.Error("YouTube video length exceeds the 1-hour limit.")
|
68 |
|
69 |
+
ydl_opts = {"outtmpl": filename, "format": "bestaudio[ext=m4a]"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
72 |
try:
|
|
|
74 |
except youtube_dl.utils.ExtractorError as err:
|
75 |
raise gr.Error(str(err))
|
76 |
|
77 |
+
def yt_transcribe(yt_url, task):
|
|
|
78 |
html_embed_str = _return_yt_html_embed(yt_url)
|
79 |
+
|
80 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
81 |
+
filepath = os.path.join(tmpdirname, "video.m4a")
|
82 |
download_yt_audio(yt_url, filepath)
|
83 |
+
result = transcribe(filepath, task)
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
return html_embed_str, result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
# Gradio 界面设置
|
88 |
+
demo = gr.Blocks()
|
89 |
+
yt_transcribe_interface = gr.Interface(
|
90 |
fn=yt_transcribe,
|
91 |
+
inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
|
|
|
|
|
|
|
92 |
outputs=["html", "text"],
|
93 |
+
title="WhisperX: Transcribe YouTube with Speaker Diarization",
|
94 |
+
description="Transcribe and diarize YouTube videos with WhisperX."
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
|
97 |
with demo:
|
98 |
+
gr.TabbedInterface([yt_transcribe_interface], ["YouTube"])
|
99 |
|
100 |
+
demo.launch()
|