StevenChen16 commited on
Commit
ee53092
·
verified ·
1 Parent(s): 31fb24f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -99
app.py CHANGED
@@ -1,37 +1,50 @@
1
- import spaces
2
- import torch
3
-
4
  import gradio as gr
5
  import yt_dlp as youtube_dl
6
- from transformers import pipeline
7
- from transformers.pipelines.audio_utils import ffmpeg_read
8
-
9
  import tempfile
10
  import os
 
 
11
 
12
- MODEL_NAME = "openai/whisper-large-v3-turbo"
13
- BATCH_SIZE = 8
14
- FILE_LIMIT_MB = 1000
15
- YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
16
-
17
- device = 0 if torch.cuda.is_available() else "cpu"
18
-
19
- pipe = pipeline(
20
- task="automatic-speech-recognition",
21
- model=MODEL_NAME,
22
- chunk_length_s=30,
23
- device=device,
24
- )
25
 
 
 
26
 
27
- @spaces.GPU
28
  def transcribe(inputs, task):
29
  if inputs is None:
30
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
33
- return text
34
-
 
 
 
 
 
 
 
 
35
 
36
  def _return_yt_html_embed(yt_url):
37
  video_id = yt_url.split("?v=")[-1]
@@ -49,22 +62,11 @@ def download_yt_audio(yt_url, filename):
49
  except youtube_dl.utils.DownloadError as err:
50
  raise gr.Error(str(err))
51
 
52
- file_length = info["duration_string"]
53
- file_h_m_s = file_length.split(":")
54
- file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
55
 
56
- if len(file_h_m_s) == 1:
57
- file_h_m_s.insert(0, 0)
58
- if len(file_h_m_s) == 2:
59
- file_h_m_s.insert(0, 0)
60
- file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
61
-
62
- if file_length_s > YT_LENGTH_LIMIT_S:
63
- yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
64
- file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
65
- raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
66
-
67
- ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
68
 
69
  with youtube_dl.YoutubeDL(ydl_opts) as ydl:
70
  try:
@@ -72,75 +74,27 @@ def download_yt_audio(yt_url, filename):
72
  except youtube_dl.utils.ExtractorError as err:
73
  raise gr.Error(str(err))
74
 
75
- @spaces.GPU
76
- def yt_transcribe(yt_url, task, max_filesize=75.0):
77
  html_embed_str = _return_yt_html_embed(yt_url)
78
-
79
  with tempfile.TemporaryDirectory() as tmpdirname:
80
- filepath = os.path.join(tmpdirname, "video.mp4")
81
  download_yt_audio(yt_url, filepath)
82
- with open(filepath, "rb") as f:
83
- inputs = f.read()
84
-
85
- inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
86
- inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
87
-
88
- text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
89
 
90
- return html_embed_str, text
91
-
92
-
93
- demo = gr.Blocks(theme=gr.themes.Ocean())
94
-
95
- mf_transcribe = gr.Interface(
96
- fn=transcribe,
97
- inputs=[
98
- gr.Audio(sources="microphone", type="filepath"),
99
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
100
- ],
101
- outputs="text",
102
- title="Whisper Large V3 Turbo: Transcribe Audio",
103
- description=(
104
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
105
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
106
- " of arbitrary length."
107
- ),
108
- allow_flagging="never",
109
- )
110
-
111
- file_transcribe = gr.Interface(
112
- fn=transcribe,
113
- inputs=[
114
- gr.Audio(sources="upload", type="filepath", label="Audio file"),
115
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
116
- ],
117
- outputs="text",
118
- title="Whisper Large V3: Transcribe Audio",
119
- description=(
120
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
121
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
122
- " of arbitrary length."
123
- ),
124
- allow_flagging="never",
125
- )
126
 
127
- yt_transcribe = gr.Interface(
 
 
128
  fn=yt_transcribe,
129
- inputs=[
130
- gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
131
- gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
132
- ],
133
  outputs=["html", "text"],
134
- title="Whisper Large V3: Transcribe YouTube",
135
- description=(
136
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
137
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe video files of"
138
- " arbitrary length."
139
- ),
140
- allow_flagging="never",
141
  )
142
 
143
  with demo:
144
- gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"])
145
 
146
- demo.queue().launch(ssr_mode=False)
 
 
 
 
1
  import gradio as gr
2
  import yt_dlp as youtube_dl
3
+ import whisperx
 
 
4
  import tempfile
5
  import os
6
+ import torch
7
+ import gc
8
 
9
+ # WhisperX配置
10
+ device = "cuda" if torch.cuda.is_available() else "cpu"
11
+ batch_size = 4
12
+ compute_type = "float32"
13
+ MODEL_NAME = "large-v3"
14
+ YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube files
 
 
 
 
 
 
 
15
 
16
+ # 加载WhisperX模型
17
+ model = whisperx.load_model(MODEL_NAME, device=device, compute_type=compute_type)
18
 
 
19
  def transcribe(inputs, task):
20
  if inputs is None:
21
  raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
22
+
23
+ # 加载和转录音频
24
+ audio = whisperx.load_audio(inputs)
25
+ result = model.transcribe(audio, batch_size=batch_size)
26
+ print(result["segments"]) # 未对齐的文本片段
27
+
28
+ # 释放资源以节省GPU内存
29
+ gc.collect()
30
+ torch.cuda.empty_cache()
31
+ del model
32
+
33
+ # 加载对齐模型
34
+ model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
35
+ result = whisperx.align(result["segments"], model_a, metadata, audio, device, return_char_alignments=False)
36
 
37
+ # 说话人分离
38
+ diarize_model = whisperx.DiarizationPipeline(use_auth_token="your_huggingface_token", device=device)
39
+ result = whisperx.assign_word_speakers(diarize_model, result)
40
+
41
+ # 格式化输出
42
+ transcript = ""
43
+ for segment in result['segments']:
44
+ speaker = segment.get('speaker', 'Unknown')
45
+ transcript += f"{speaker}: {segment['text']}\n"
46
+
47
+ return transcript
48
 
49
  def _return_yt_html_embed(yt_url):
50
  video_id = yt_url.split("?v=")[-1]
 
62
  except youtube_dl.utils.DownloadError as err:
63
  raise gr.Error(str(err))
64
 
65
+ file_length = info["duration"]
66
+ if file_length > YT_LENGTH_LIMIT_S:
67
+ raise gr.Error("YouTube video length exceeds the 1-hour limit.")
68
 
69
+ ydl_opts = {"outtmpl": filename, "format": "bestaudio[ext=m4a]"}
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  with youtube_dl.YoutubeDL(ydl_opts) as ydl:
72
  try:
 
74
  except youtube_dl.utils.ExtractorError as err:
75
  raise gr.Error(str(err))
76
 
77
+ def yt_transcribe(yt_url, task):
 
78
  html_embed_str = _return_yt_html_embed(yt_url)
79
+
80
  with tempfile.TemporaryDirectory() as tmpdirname:
81
+ filepath = os.path.join(tmpdirname, "video.m4a")
82
  download_yt_audio(yt_url, filepath)
83
+ result = transcribe(filepath, task)
 
 
 
 
 
 
84
 
85
+ return html_embed_str, result
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
 
87
+ # Gradio 界面设置
88
+ demo = gr.Blocks()
89
+ yt_transcribe_interface = gr.Interface(
90
  fn=yt_transcribe,
91
+ inputs=[gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
 
 
 
92
  outputs=["html", "text"],
93
+ title="WhisperX: Transcribe YouTube with Speaker Diarization",
94
+ description="Transcribe and diarize YouTube videos with WhisperX."
 
 
 
 
 
95
  )
96
 
97
  with demo:
98
+ gr.TabbedInterface([yt_transcribe_interface], ["YouTube"])
99
 
100
+ demo.launch()