Spaces:
Sleeping
Sleeping
StevenChen16
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
3 |
import supervision as sv
|
4 |
import spaces
|
5 |
from huggingface_hub import hf_hub_download
|
@@ -30,28 +32,71 @@ category_dict = {
|
|
30 |
}
|
31 |
|
32 |
|
33 |
-
|
34 |
-
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
|
35 |
model_path = download_models(model_id)
|
36 |
model = YOLOv10(model_path)
|
37 |
-
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
38 |
-
detections = sv.Detections.from_ultralytics(results)
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
return annotated_image
|
47 |
|
|
|
48 |
def app():
|
49 |
with gr.Blocks():
|
50 |
with gr.Row():
|
51 |
with gr.Column():
|
52 |
-
|
53 |
-
video = gr.Video(
|
54 |
-
|
|
|
|
|
|
|
|
|
55 |
model_id = gr.Dropdown(
|
56 |
label="Model",
|
57 |
choices=[
|
@@ -88,46 +133,54 @@ def app():
|
|
88 |
yolov10_infer = gr.Button(value="Detect Objects")
|
89 |
|
90 |
with gr.Column():
|
91 |
-
output_image = gr.Image(type="
|
92 |
output_video = gr.Video(label="Annotated Video", visible=False)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
yolov10_infer.click(
|
95 |
-
fn=
|
96 |
-
inputs=[
|
97 |
-
|
98 |
-
model_id,
|
99 |
-
image_size,
|
100 |
-
conf_threshold,
|
101 |
-
iou_threshold,
|
102 |
-
],
|
103 |
-
outputs=[output_image],
|
104 |
)
|
105 |
|
106 |
gr.Examples(
|
107 |
examples=[
|
108 |
[
|
109 |
-
"
|
110 |
-
"
|
111 |
640,
|
112 |
0.25,
|
113 |
0.45,
|
114 |
],
|
115 |
[
|
116 |
-
"
|
117 |
-
"
|
118 |
-
640,
|
119 |
-
0.25,
|
120 |
-
0.45,
|
121 |
-
],
|
122 |
-
[
|
123 |
-
"zidane.jpg",
|
124 |
-
"yolov10b.pt",
|
125 |
640,
|
126 |
0.25,
|
127 |
0.45,
|
128 |
],
|
129 |
],
|
130 |
-
fn=
|
131 |
inputs=[
|
132 |
image,
|
133 |
model_id,
|
@@ -136,9 +189,10 @@ def app():
|
|
136 |
iou_threshold,
|
137 |
],
|
138 |
outputs=[output_image],
|
139 |
-
cache_examples=
|
140 |
)
|
141 |
|
|
|
142 |
gradio_app = gr.Blocks()
|
143 |
with gradio_app:
|
144 |
gr.HTML(
|
@@ -150,12 +204,12 @@ with gradio_app:
|
|
150 |
gr.HTML(
|
151 |
"""
|
152 |
<h3 style='text-align: center'>
|
153 |
-
|
154 |
-
<a href='https://twitter.com/kadirnar_ai' target='_blank'>Twitter</a> | <a href='https://github.com/kadirnar' target='_blank'>Github</a> | <a href='https://www.linkedin.com/in/kadir-nar/' target='_blank'>Linkedin</a> | <a href='https://www.huggingface.co/kadirnar/' target='_blank'>HuggingFace</a>
|
155 |
</h3>
|
156 |
""")
|
157 |
with gr.Row():
|
158 |
with gr.Column():
|
159 |
app()
|
160 |
|
161 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import tempfile
|
4 |
+
from ultralytics import YOLOv10
|
5 |
import supervision as sv
|
6 |
import spaces
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
32 |
}
|
33 |
|
34 |
|
35 |
+
def yolov10_inference(image, video, model_id, image_size, conf_threshold, iou_threshold):
|
|
|
36 |
model_path = download_models(model_id)
|
37 |
model = YOLOv10(model_path)
|
|
|
|
|
38 |
|
39 |
+
if image:
|
40 |
+
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
41 |
+
detections = sv.Detections.from_ultralytics(results)
|
42 |
+
|
43 |
+
labels = [
|
44 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
45 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
46 |
+
]
|
47 |
+
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
48 |
+
return annotated_image[:, :, ::-1], None
|
49 |
+
else:
|
50 |
+
video_path = tempfile.mktemp(suffix=".webm")
|
51 |
+
with open(video_path, "wb") as f:
|
52 |
+
with open(video, "rb") as g:
|
53 |
+
f.write(g.read())
|
54 |
|
55 |
+
cap = cv2.VideoCapture(video_path)
|
56 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
57 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
58 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
59 |
+
|
60 |
+
output_video_path = tempfile.mktemp(suffix=".webm")
|
61 |
+
out = cv2.VideoWriter(output_video_path, cv2.VideoWriter_fourcc(*'vp80'), fps, (frame_width, frame_height))
|
62 |
+
|
63 |
+
while cap.isOpened():
|
64 |
+
ret, frame = cap.read()
|
65 |
+
if not ret:
|
66 |
+
break
|
67 |
+
|
68 |
+
results = model(source=frame, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
|
69 |
+
detections = sv.Detections.from_ultralytics(results)
|
70 |
+
|
71 |
+
labels = [
|
72 |
+
f"{category_dict[class_id]} {confidence:.2f}"
|
73 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
74 |
+
]
|
75 |
+
annotated_frame = box_annotator.annotate(frame, detections=detections, labels=labels)
|
76 |
+
out.write(annotated_frame)
|
77 |
+
|
78 |
+
cap.release()
|
79 |
+
out.release()
|
80 |
+
|
81 |
+
return None, output_video_path
|
82 |
+
|
83 |
+
|
84 |
+
def yolov10_inference_for_examples(image, model_id, image_size, conf_threshold, iou_threshold):
|
85 |
+
annotated_image, _ = yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
|
86 |
return annotated_image
|
87 |
|
88 |
+
|
89 |
def app():
|
90 |
with gr.Blocks():
|
91 |
with gr.Row():
|
92 |
with gr.Column():
|
93 |
+
image = gr.Image(type="pil", label="Image", visible=True)
|
94 |
+
video = gr.Video(label="Video", visible=False)
|
95 |
+
input_type = gr.Radio(
|
96 |
+
choices=["Image", "Video"],
|
97 |
+
value="Image",
|
98 |
+
label="Input Type",
|
99 |
+
)
|
100 |
model_id = gr.Dropdown(
|
101 |
label="Model",
|
102 |
choices=[
|
|
|
133 |
yolov10_infer = gr.Button(value="Detect Objects")
|
134 |
|
135 |
with gr.Column():
|
136 |
+
output_image = gr.Image(type="numpy", label="Annotated Image", visible=True)
|
137 |
output_video = gr.Video(label="Annotated Video", visible=False)
|
138 |
|
139 |
+
def update_visibility(input_type):
|
140 |
+
image_visibility = input_type == "Image"
|
141 |
+
return (
|
142 |
+
gr.update(visible=image_visibility),
|
143 |
+
gr.update(visible=not image_visibility),
|
144 |
+
gr.update(visible=image_visibility),
|
145 |
+
gr.update(visible=not image_visibility),
|
146 |
+
)
|
147 |
+
|
148 |
+
input_type.change(
|
149 |
+
fn=update_visibility,
|
150 |
+
inputs=[input_type],
|
151 |
+
outputs=[image, video, output_image, output_video],
|
152 |
+
)
|
153 |
+
|
154 |
+
def run_inference(image, video, model_id, image_size, conf_threshold, iou_threshold, input_type):
|
155 |
+
if input_type == "Image":
|
156 |
+
return yolov10_inference(image, None, model_id, image_size, conf_threshold, iou_threshold)
|
157 |
+
else:
|
158 |
+
return yolov10_inference(None, video, model_id, image_size, conf_threshold, iou_threshold)
|
159 |
+
|
160 |
yolov10_infer.click(
|
161 |
+
fn=run_inference,
|
162 |
+
inputs=[image, video, model_id, image_size, conf_threshold, iou_threshold, input_type],
|
163 |
+
outputs=[output_image, output_video],
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
)
|
165 |
|
166 |
gr.Examples(
|
167 |
examples=[
|
168 |
[
|
169 |
+
"ultralytics/assets/bus.jpg",
|
170 |
+
"yolov10s.pt",
|
171 |
640,
|
172 |
0.25,
|
173 |
0.45,
|
174 |
],
|
175 |
[
|
176 |
+
"ultralytics/assets/zidane.jpg",
|
177 |
+
"yolov10s.pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
640,
|
179 |
0.25,
|
180 |
0.45,
|
181 |
],
|
182 |
],
|
183 |
+
fn=yolov10_inference_for_examples,
|
184 |
inputs=[
|
185 |
image,
|
186 |
model_id,
|
|
|
189 |
iou_threshold,
|
190 |
],
|
191 |
outputs=[output_image],
|
192 |
+
cache_examples='lazy',
|
193 |
)
|
194 |
|
195 |
+
|
196 |
gradio_app = gr.Blocks()
|
197 |
with gradio_app:
|
198 |
gr.HTML(
|
|
|
204 |
gr.HTML(
|
205 |
"""
|
206 |
<h3 style='text-align: center'>
|
207 |
+
<a href='https://arxiv.org/abs/2405.14458' target='_blank'>arXiv</a> | <a href='https://github.com/THU-MIG/yolov10' target='_blank'>github</a>
|
|
|
208 |
</h3>
|
209 |
""")
|
210 |
with gr.Row():
|
211 |
with gr.Column():
|
212 |
app()
|
213 |
|
214 |
+
if __name__ == '__main__':
|
215 |
+
gradio_app.launch()
|