Spaces:
Sleeping
Sleeping
File size: 5,973 Bytes
617da91 1bf74ad 617da91 1bf74ad 617da91 1bf74ad 617da91 1bf74ad 617da91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
from __future__ import annotations
import datetime
import json
import os
from configparser import ConfigParser
from pathlib import Path
from string import Formatter
from dotenv import dotenv_values
import openai
from azure.storage.blob import BlobClient
# Logging util
def get_current_timestamp() -> str:
return datetime.datetime.now().isoformat()
class ChatLoggerHandler:
"""Shared logging handler for chat logs. Runs common to all Gradio sessions."""
def __init__(self, logdir: str = "./logs") -> None:
self.logdir: Path = Path(logdir)
def record(self, session: str, role: str, record: str):
log_entry = {
"session": session,
"timestamp": get_current_timestamp(),
"role": role,
"message": record,
}
with open(self.logdir / f"{session}.jsonl", "a+") as f:
f.write(json.dumps(log_entry) + "\n")
def record_chat(
logger: ChatLoggerHandler, session: str, role: str, record: str
) -> None:
logger.record(session, role, record)
# General Class
class PromptTemplate(str):
"""More robust String Formatter. Takes a string and parses out the keywords."""
def __init__(self, template: str) -> None:
self.template: str = template
self.variables: list[str] = self.parse_template()
def parse_template(self) -> list[str]:
"Returns template variables"
return [
fn for _, fn, _, _ in Formatter().parse(self.template) if fn is not None
]
def format(self, *args, **kwargs) -> str:
"""
Formats the template string with the given arguments.
Provides slightly more informative error handling.
:param args: Positional arguments for unnamed placeholders.
:param kwargs: Keyword arguments for named placeholders.
:return: Formatted string.
:raises: ValueError if arguments do not match template variables.
"""
# If keyword arguments are provided, check if they match the template variables
if kwargs and set(kwargs) != set(self.variables):
raise ValueError("Keyword arguments do not match template variables.")
# If positional arguments are provided, check if their count matches the number of template variables
if args and len(args) != len(self.variables):
raise ValueError(
"Number of arguments does not match the number of template variables."
)
# Check if a dictionary is passed as a single positional argument
if len(args) == 1 and isinstance(args[0], dict):
arg_dict = args[0]
if set(arg_dict) != set(self.variables):
raise ValueError("Dictionary keys do not match template variables.")
return self.template.format(**arg_dict)
# Check for the special case where both args and kwargs are empty, which means self.variables must also be empty
if not args and not kwargs and self.variables:
raise ValueError("No arguments provided, but template expects variables.")
# Use the arguments to format the template
try:
return self.template.format(*args, **kwargs)
except KeyError as e:
raise ValueError(f"Missing a keyword argument: {e}")
@classmethod
def from_file(cls, file_path: str) -> PromptTemplate:
with open(file_path, encoding="utf-8") as file:
template_content = file.read()
return cls(template_content)
def dump_prompt(self, file_path: str) -> None:
with open(file_path, "w", encoding="utf-8") as file:
file.write(self.template)
file.close()
def convert_gradio_to_openai(
chat_history: list[list[str | None]],
) -> list[dict[str, str]]:
"Converts gradio chat format -> openai chat request format"
messages = []
for pair in chat_history: # [(user), (assistant)]
for i, role in enumerate(["user", "assistant"]):
if not ((pair[i] is None) or (pair[i] == "")):
messages += [{"role": role, "content": pair[i]}]
return messages
def convert_openai_to_gradio(
messages: list[dict[str, str]]
) -> list[list[str, str | None]]:
"Converts openai chat request format -> gradio chat format"
chat_history = []
if messages[0]["role"] != "user":
messages.insert(0, {"role": "user", "content": None})
for i in range(0, len(messages), 2):
chat_history.append([messages[i]["content"], messages[i + 1]["content"]])
return chat_history
def load_dotenv():
config = dotenv_values(".env")
for key, value in config.items():
os.environ[key] = value
def seed_azure_key(cfg: str = "~/.cfg/openai.cfg") -> None:
config = ConfigParser()
try:
config.read(Path(cfg).expanduser())
except:
raise ValueError(f"Could not using read file at: {cfg}.")
os.environ["AZURE_ENDPOINT"] = config["AZURE"]["endpoint"]
os.environ["AZURE_SECRET"] = config["AZURE"]["key"]
def initialize_client() -> openai.AsyncClient:
client = openai.AzureOpenAI(
azure_endpoint=os.environ["AZURE_ENDPOINT"],
api_key=os.environ["AZURE_SECRET"],
api_version="2023-05-15",
)
return client
def auth_no_user(username, password):
if password == os.getenv("GRADIO_PASSWORD", ""):
return True
else:
return False
def upload_azure(conversation_id: str, chat_history) -> None:
# Get blob client
conn_str = os.getenv("AZURE_CONN_STR")
container_name = os.getenv("AZURE_CONTAINER_NAME")
blob_name = conversation_id
blob_client = BlobClient.from_connection_string(conn_str, container_name, blob_name)
# Convert chat_history to json lines
records = convert_gradio_to_openai(chat_history)
records_text = "\n".join([json.dumps(record) for record in records])
blob_client.upload_blob(records_text, blob_type="AppendBlob", overwrite=True)
|