survey-chatbot / utils.py
drmjh's picture
Create logdir
ba6fa35
from __future__ import annotations
import datetime
import json
import os
from configparser import ConfigParser
from pathlib import Path
from string import Formatter
from dotenv import dotenv_values
import openai
from azure.storage.blob import BlobClient
# Logging util
def get_current_timestamp() -> str:
return datetime.datetime.now().isoformat()
class ChatLoggerHandler:
"""Shared logging handler for chat logs. Runs common to all Gradio sessions."""
def __init__(self, logdir: str = "./logs") -> None:
self.logdir: Path = Path(logdir)
if not self.logdir.exists():
self.logdir.mkdir()
def record(self, session: str, role: str, record: str):
log_entry = {
"session": session,
"timestamp": get_current_timestamp(),
"role": role,
"message": record,
}
with open(self.logdir / f"{session}.jsonl", "a+") as f:
f.write(json.dumps(log_entry) + "\n")
def record_chat(
logger: ChatLoggerHandler, session: str, role: str, record: str
) -> None:
logger.record(session, role, record)
# General Class
class PromptTemplate(str):
"""More robust String Formatter. Takes a string and parses out the keywords."""
def __init__(self, template: str) -> None:
self.template: str = template
self.variables: list[str] = self.parse_template()
def parse_template(self) -> list[str]:
"Returns template variables"
return [
fn for _, fn, _, _ in Formatter().parse(self.template) if fn is not None
]
def format(self, *args, **kwargs) -> str:
"""
Formats the template string with the given arguments.
Provides slightly more informative error handling.
:param args: Positional arguments for unnamed placeholders.
:param kwargs: Keyword arguments for named placeholders.
:return: Formatted string.
:raises: ValueError if arguments do not match template variables.
"""
# If keyword arguments are provided, check if they match the template variables
if kwargs and set(kwargs) != set(self.variables):
raise ValueError("Keyword arguments do not match template variables.")
# If positional arguments are provided, check if their count matches the number of template variables
if args and len(args) != len(self.variables):
raise ValueError(
"Number of arguments does not match the number of template variables."
)
# Check if a dictionary is passed as a single positional argument
if len(args) == 1 and isinstance(args[0], dict):
arg_dict = args[0]
if set(arg_dict) != set(self.variables):
raise ValueError("Dictionary keys do not match template variables.")
return self.template.format(**arg_dict)
# Check for the special case where both args and kwargs are empty, which means self.variables must also be empty
if not args and not kwargs and self.variables:
raise ValueError("No arguments provided, but template expects variables.")
# Use the arguments to format the template
try:
return self.template.format(*args, **kwargs)
except KeyError as e:
raise ValueError(f"Missing a keyword argument: {e}")
@classmethod
def from_file(cls, file_path: str) -> PromptTemplate:
with open(file_path, encoding="utf-8") as file:
template_content = file.read()
return cls(template_content)
def dump_prompt(self, file_path: str) -> None:
with open(file_path, "w", encoding="utf-8") as file:
file.write(self.template)
file.close()
def convert_gradio_to_openai(
chat_history: list[list[str | None]],
) -> list[dict[str, str]]:
"Converts gradio chat format -> openai chat request format"
messages = []
for pair in chat_history: # [(user), (assistant)]
for i, role in enumerate(["user", "assistant"]):
if not ((pair[i] is None) or (pair[i] == "")):
messages += [{"role": role, "content": pair[i]}]
return messages
def convert_openai_to_gradio(
messages: list[dict[str, str]]
) -> list[list[str, str | None]]:
"Converts openai chat request format -> gradio chat format"
chat_history = []
if messages[0]["role"] != "user":
messages.insert(0, {"role": "user", "content": None})
for i in range(0, len(messages), 2):
chat_history.append([messages[i]["content"], messages[i + 1]["content"]])
return chat_history
def load_dotenv():
config = dotenv_values(".env")
for key, value in config.items():
os.environ[key] = value
def seed_azure_key(cfg: str = "~/.cfg/openai.cfg") -> None:
config = ConfigParser()
try:
config.read(Path(cfg).expanduser())
except:
raise ValueError(f"Could not using read file at: {cfg}.")
os.environ["AZURE_ENDPOINT"] = config["AZURE"]["endpoint"]
os.environ["AZURE_SECRET"] = config["AZURE"]["key"]
def initialize_client() -> openai.AsyncClient:
client = openai.AzureOpenAI(
azure_endpoint=os.environ["AZURE_ENDPOINT"],
api_key=os.environ["AZURE_SECRET"],
api_version="2023-05-15",
)
return client
def auth_no_user(username, password):
if password == os.getenv("GRADIO_PASSWORD", ""):
return True
else:
return False
def upload_azure(conversation_id: str, chat_history) -> None:
# Get blob client
conn_str = os.getenv("AZURE_CONN_STR")
container_name = os.getenv("AZURE_CONTAINER_NAME")
blob_name = conversation_id
blob_client = BlobClient.from_connection_string(conn_str, container_name, blob_name)
# Convert chat_history to json lines
records = convert_gradio_to_openai(chat_history)
records_text = "\n".join([json.dumps(record) for record in records])
blob_client.upload_blob(records_text, blob_type="AppendBlob", overwrite=True)