import os os.system('pip install ctransformers') import ctransformers import time import requests from tqdm import tqdm import uuid #Get the model file - you will need Expandable Storage to make this work if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'): print("Downloading Model from HuggingFace") url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" response = requests.get(url, stream=True) total_size_in_bytes= int(response.headers.get('content-length', 0)) block_size = 1024 #1 Kibibyte progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: for data in response.iter_content(block_size): progress_bar.update(len(data)) file.write(data) progress_bar.close() if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: print("ERROR, something went wrong") #Sets up the transformer library and adds in the Llama-2 model configObj = ctransformers.Config(stop=["\n", 'User']) config = ctransformers.AutoConfig(config=configObj, model_type='llama') config.config.stop = ["\n"] llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) print("Loaded model") def time_it(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.") return result return wrapper def complete(prompt, stop=["User", "Assistant"]): tokens = llm.tokenize(prompt) token_count = 0 output = '' for token in llm.generate(tokens): token_count += 1 result = llm.detokenize(token) output += result for word in stop: if word in output: print('\n') return [output, token_count] print(result, end='',flush=True) print('\n') return [output, token_count] while True: question = input("\nWhat is your question? > ") start_time = time.time() output, token_count = complete(f'User: {question}. Can you please answer this as informative but concisely as possible.\nAssistant: ') end_time = time.time() execution_time = end_time - start_time print(f"{token_count} tokens generated in {execution_time:.6f} seconds.\n{token_count/execution_time} tokens per second")