File size: 2,765 Bytes
cc91aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
from torchvision import models, transforms
from PIL import Image
import gradio as gr

## Define the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load the trained model
def load_model():
    model = models.resnet50(pretrained=False)
    num_classes = 4  # Update based on your rice disease classes
    model.fc = torch.nn.Sequential(
        torch.nn.Linear(model.fc.in_features, 256),
        torch.nn.ReLU(),
        torch.nn.Linear(256, num_classes)
    )  
    model.load_state_dict(torch.load(r"/kaggle/input/rice_epoch8/pytorch/default/1/best_model_epoch_8.pth", map_location=device), strict=False)
    model = model.to(device)
    model.eval()
    return model

# Define preprocessing steps
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Prediction function
def predict(image):
    # Ensure image is in RGB
    image = image.convert("RGB")
    
    input_tensor = transform(image).unsqueeze(0).to(device)
    
    # Perform inference
    with torch.no_grad():
        outputs = model(input_tensor)
        _, predicted_class = torch.max(outputs, 1)
    
    # Map predicted class index to actual labels
    class_names = ["Brown Spot", "Healthy", "Leaf Blast", "Neck Blast"]
    predicted_label = class_names[predicted_class.item()]
    
    # Calculate confidence scores
    probabilities = torch.nn.functional.softmax(outputs, dim=1)[0]
    confidence = probabilities[predicted_class.item()].item()
    
    return f"Predicted Disease: {predicted_label}\nConfidence: {confidence*100:.2f}%"

# Load the model globally
model = load_model()

# Create Gradio interface
def launch_interface():
    # Create a Gradio interface
    iface = gr.Interface(
        theme="Subh775/orchid_candy",
        fn=predict,
        inputs=gr.Image(type="pil", label="Upload Rice Leaf Image"),
        outputs=gr.Textbox(label="Prediction Results"),
        title="Rice Disease Classification",
        description="Upload a rice leaf image to detect disease type",
        examples=[
            ["https://doa.gov.lk/wp-content/uploads/2020/06/brownspot3-1024x683.jpg"],
            ["https://arkansascrops.uada.edu/posts/crops/rice/images/Fig%206%20Rice%20leaf%20blast%20coalesced%20lesions.png"],
            ["https://th.bing.com/th/id/OIP._5ejX_5Z-M0cO5c2QUmPlwHaE7?w=280&h=187&c=7&r=0&o=5&dpr=1.1&pid=1.7"],
            ["https://www.weknowrice.com/wp-content/uploads/2022/11/how-to-grow-rice.jpeg"],
        ],
        allow_flagging="never"
    )
    
    return iface

# Launch the interface
if __name__ == "__main__":
    interface = launch_interface()
    interface.launch(share=True)