Spaces:
Sleeping
Sleeping
import plotly.graph_objects as go | |
from plotly.subplots import make_subplots | |
import streamlit as st | |
import requests | |
import json | |
import os | |
from dotenv import load_dotenv | |
load_dotenv() | |
# AI model code | |
HF_API_KEY = os.getenv("HF_API_KEY") | |
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion" | |
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en" | |
headers = {"Authorization": f"Bearer {HF_API_KEY}"} | |
st.set_page_config( | |
page_title="GoEmotions Dashboard", | |
layout="wide" | |
) | |
# Set page title | |
st.title("GoEmotions Dashboard - Analyzing Emotions in Text") | |
def query(payload): | |
response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload) | |
response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload) | |
return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8"))) | |
# Define color map for each emotion category | |
color_map = { | |
'admiration': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'amusement': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'], | |
'anger': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'annoyance': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'approval': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'caring': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'confusion': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'curiosity': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'desire': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'], | |
'disappointment': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'disapproval': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'disgust': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'embarrassment': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'excitement': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'], | |
'fear': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'gratitude': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'grief': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'joy': ['#ff7f0e', '#ffbb78', '#2ca02c', '#d62728'], | |
'love': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'nervousness': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'optimism': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'pride': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'realization': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'relief': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'], | |
'remorse': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'sadness': ['#d62728', '#ff9896', '#2ca02c', '#bcbd22'], | |
'surprise': ['#9467bd', '#c5b0d5', '#ff7f0e', '#d62728'], | |
'neutral': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728'] | |
} | |
# Labels for Hate Speech Classification | |
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"} | |
# Define default options | |
def format_option(option): | |
# Set the maximum length of the option text you want to display | |
max_length = 200 | |
if len(option) > max_length: | |
# Truncate the option text and add ellipsis at the end | |
return option[:max_length] + '...' | |
else: | |
return option | |
default_options = [ | |
"I'm so excited for my vacation next week!", | |
"I'm feeling so stressed about work.", | |
"I just received great news from my doctor!", | |
"I can't wait to see my best friend tomorrow.", | |
"I'm feeling so lonely and sad today." | |
"I'm so angry at my neighbor for being so rude.", | |
"You are so annoying!", | |
"You people from small towns are so dumb.", | |
"If you don't agree with me, you are a moron.", | |
"I hate you so much!", | |
"If you don't listen to me, I'll beat you up!", | |
] | |
with st.sidebar: | |
# Add page description | |
description = "The GoEmotions Dashboard is a web-based user interface for analyzing emotions in text. The dashboard is powered by a pre-trained natural language processing model that can detect emotions in text input. Users can input any text and the dashboard will display the detected emotions in a set of gauges, with each gauge representing the intensity of a specific emotion category. The gauge colors are based on a predefined color map for each emotion category. This dashboard is useful for anyone who wants to understand the emotional content of a text, including content creators, marketers, and researchers." | |
#st.markdown(description) | |
# Create dropdown with default options | |
selected_option = st.selectbox("Select a default option or enter your own text:", default_options, format_func=lambda x: format_option(x)) | |
# Display text input with selected option as default value | |
text_input = st.text_area("Enter text to analyze emotions:", value = selected_option, height=100) | |
# Add submit button | |
submit = st.button("Submit") | |
# If submit button is clicked | |
if submit: | |
# Call API and get predicted probabilities for each emotion category and hate speech classification | |
payload = {"inputs": text_input, "use_cache": True, "wait_for_model": True} | |
response_ED, response_HS = query(payload) | |
predicted_probabilities_ED = response_ED[0] | |
predicted_probabilities_HS = response_HS[0] | |
ED, _, HS = st.columns([5,2,3]) | |
with ED: | |
# Sort the predicted probabilities in descending order | |
sorted_probs_ED = sorted(predicted_probabilities_ED, key=lambda x: x['score'], reverse=True) | |
# Get the top 4 emotion categories and their scores | |
top_emotions = sorted_probs_ED[:4] | |
top_scores = [e['score'] for e in top_emotions] | |
# Normalize the scores so that they add up to 100% | |
total = sum(top_scores) | |
normalized_scores = [score/total * 100 for score in top_scores] | |
# Create the gauge charts for the top 4 emotion categories using the normalized scores | |
fig = make_subplots(rows=2, cols=2, specs=[[{'type': 'indicator'}, {'type': 'indicator'}], | |
[{'type': 'indicator'}, {'type': 'indicator'}]], | |
vertical_spacing=0.4) | |
for i, emotion in enumerate(top_emotions): | |
category = emotion['label'] | |
color = color_map[category] | |
value = normalized_scores[i] | |
row = i // 2 + 1 | |
col = i % 2 + 1 | |
fig.add_trace(go.Indicator( | |
domain={'x': [0, 1], 'y': [0, 1]}, | |
value=value, | |
mode="gauge+number", | |
title={'text': category.capitalize()}, | |
gauge={'axis': {'range': [None, 100]}, | |
'bar': {'color': color[3]}, | |
'bgcolor': 'white', | |
'borderwidth': 2, | |
'bordercolor': color[1], | |
'steps': [{'range': [0, 33], 'color': color[0]}, | |
{'range': [33, 66], 'color': color[1]}, | |
{'range': [66, 100], 'color': color[2]}], | |
'threshold': {'line': {'color': "black", 'width': 4}, | |
'thickness': 0.5, | |
'value': 50}}), row=row, col=col) | |
# Update layout | |
fig.update_layout(height=400, margin=dict(t=50, b=5, l=0, r=0)) | |
# Display gauge charts | |
st.text("") | |
st.text("") | |
st.text("") | |
st.subheader("Emotion Detection") | |
st.text("") | |
st.plotly_chart(fig, use_container_width=True) | |
with _: | |
st.text("") | |
with HS: | |
# Display Hate Speech Classification | |
hate_detection = label_hs[predicted_probabilities_HS[0]['label']] | |
st.text("") | |
st.text("") | |
st.text("") | |
st.subheader("Hate Speech Analysis") | |
st.text("") | |
st.image(f"assets/{hate_detection}.jpg", width=200) | |
st.text("") | |
st.text("") | |
st.text("") | |
st.text("") | |
st.markdown(f"#### The given text is {hate_detection}") | |