devanshsrivastav commited on
Commit
29d3362
·
1 Parent(s): 452b39b

added hate speech classification

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. EDxHuggingface.py +24 -9
  3. requirements.txt +2 -0
.gitignore CHANGED
@@ -1,2 +1,3 @@
1
  .env
2
  .DS_Store
 
 
1
  .env
2
  .DS_Store
3
+ tumai
EDxHuggingface.py CHANGED
@@ -10,7 +10,8 @@ load_dotenv()
10
  # AI model code
11
  HF_API_KEY = os.getenv("HF_API_KEY")
12
 
13
- API_URL = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
 
14
  headers = {"Authorization": f"Bearer {HF_API_KEY}"}
15
 
16
  # Set page title
@@ -21,9 +22,9 @@ description = "The GoEmotions Dashboard is a web-based user interface for analyz
21
  st.markdown(description)
22
 
23
  def query(payload):
24
- data = json.dumps(payload)
25
- response = requests.request("POST", API_URL, headers=headers, data=data)
26
- return json.loads(response.content.decode("utf-8"))
27
 
28
  # Define color map for each emotion category
29
  color_map = {
@@ -57,6 +58,9 @@ color_map = {
57
  'neutral': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728']
58
  }
59
 
 
 
 
60
  # Define default options
61
  default_options = [
62
  "I'm so excited for my vacation next week!",
@@ -64,6 +68,12 @@ default_options = [
64
  "I just received great news from my doctor!",
65
  "I can't wait to see my best friend tomorrow.",
66
  "I'm feeling so lonely and sad today."
 
 
 
 
 
 
67
  ]
68
 
69
 
@@ -76,15 +86,17 @@ text_input = st.text_input("Enter text to analyze emotions:", selected_option)
76
  # Add submit button
77
  if st.button("Submit"):
78
 
79
- # Call API and get predicted probabilities for each emotion category
80
- response = query(text_input)
81
- predicted_probabilities = response[0]
 
 
82
 
83
  # Sort the predicted probabilities in descending order
84
- sorted_probs = sorted(predicted_probabilities, key=lambda x: x['score'], reverse=True)
85
 
86
  # Get the top 4 emotion categories and their scores
87
- top_emotions = sorted_probs[:4]
88
  top_scores = [e['score'] for e in top_emotions]
89
 
90
  # Normalize the scores so that they add up to 100%
@@ -126,3 +138,6 @@ if st.button("Submit"):
126
  # Display gauge charts
127
  st.plotly_chart(fig, use_container_width=True)
128
 
 
 
 
 
10
  # AI model code
11
  HF_API_KEY = os.getenv("HF_API_KEY")
12
 
13
+ API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
14
+ API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
15
  headers = {"Authorization": f"Bearer {HF_API_KEY}"}
16
 
17
  # Set page title
 
22
  st.markdown(description)
23
 
24
  def query(payload):
25
+ response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
26
+ response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
27
+ return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8")))
28
 
29
  # Define color map for each emotion category
30
  color_map = {
 
58
  'neutral': ['#1f77b4', '#aec7e8', '#ff7f0e', '#d62728']
59
  }
60
 
61
+ # Labels for Hate Speech Classification
62
+ label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}
63
+
64
  # Define default options
65
  default_options = [
66
  "I'm so excited for my vacation next week!",
 
68
  "I just received great news from my doctor!",
69
  "I can't wait to see my best friend tomorrow.",
70
  "I'm feeling so lonely and sad today."
71
+ "I'm so angry at my neighbor for being so rude.",
72
+ "You are so annoying!",
73
+ "You people from small towns are so dumb.",
74
+ "If you don't agree with me, you are a moron.",
75
+ "I hate you so much!",
76
+ "If you don't listen to me, I'll beat you up!",
77
  ]
78
 
79
 
 
86
  # Add submit button
87
  if st.button("Submit"):
88
 
89
+ # Call API and get predicted probabilities for each emotion category and hate speech classification
90
+ payload = {"inputs": text_input, "use_cache": True, "wait_for_model": True}
91
+ response_ED, response_HS = query(payload)
92
+ predicted_probabilities_ED = response_ED[0]
93
+ predicted_probabilities_HS = response_HS[0]
94
 
95
  # Sort the predicted probabilities in descending order
96
+ sorted_probs_ED = sorted(predicted_probabilities_ED, key=lambda x: x['score'], reverse=True)
97
 
98
  # Get the top 4 emotion categories and their scores
99
+ top_emotions = sorted_probs_ED[:4]
100
  top_scores = [e['score'] for e in top_emotions]
101
 
102
  # Normalize the scores so that they add up to 100%
 
138
  # Display gauge charts
139
  st.plotly_chart(fig, use_container_width=True)
140
 
141
+ # Display Hate Speech Classification
142
+ hate_detection = label_hs[predicted_probabilities_HS[0]['label']]
143
+ st.text(f"Hate Speech Classification: {hate_detection}")
requirements.txt CHANGED
@@ -2,3 +2,5 @@ plotly==5.3.1
2
  streamlit==1.3.0
3
  requests==2.26.0
4
  python-dotenv==0.19.1
 
 
 
2
  streamlit==1.3.0
3
  requests==2.26.0
4
  python-dotenv==0.19.1
5
+ protobuf==3.20.*
6
+ altair<5