Spaces:
Sleeping
Sleeping
devanshsrivastav
commited on
Commit
·
3b1e528
1
Parent(s):
7224958
added sexism detection
Browse files- .github/workflows/main.yml +1 -0
- README.md +2 -1
- app.py +27 -8
- assets/Not Sexist.jpg +0 -0
- assets/Sexist.jpg +0 -0
.github/workflows/main.yml
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
name: Sync to Hugging Face hub
|
2 |
on:
|
3 |
push:
|
|
|
4 |
branches: [main]
|
5 |
|
6 |
# to run this workflow manually from the Actions tab
|
|
|
1 |
name: Sync to Hugging Face hub
|
2 |
on:
|
3 |
push:
|
4 |
+
pull_request:
|
5 |
branches: [main]
|
6 |
|
7 |
# to run this workflow manually from the Actions tab
|
README.md
CHANGED
@@ -31,7 +31,8 @@ pip install -r requirements.txt
|
|
31 |
## Usage
|
32 |
|
33 |
- Navigate to the root directory of the project.
|
34 |
-
- Run the Streamlit app by typing `streamlit run
|
|
|
35 |
|
36 |
- A web-based dashboard will open in your default browser.
|
37 |
- Type or paste a text input in the text box provided.
|
|
|
31 |
## Usage
|
32 |
|
33 |
- Navigate to the root directory of the project.
|
34 |
+
- Run the Streamlit app by typing `streamlit run app.py` or `python -m streamlit run app.py` in the command line.
|
35 |
+
- For GitHub Codespaces, Run: `python -m streamlit run app.py --server.enableCORS false --server.enableXsrfProtection false`
|
36 |
|
37 |
- A web-based dashboard will open in your default browser.
|
38 |
- Type or paste a text input in the text box provided.
|
app.py
CHANGED
@@ -13,6 +13,8 @@ HF_API_KEY = os.getenv("HF_API_KEY")
|
|
13 |
# API_URL_ED = "https://api-inference.huggingface.co/models/j-hartmann/emotion-english-distilroberta-base" #alternate ED model(slow loading on first run)
|
14 |
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
|
15 |
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
|
|
|
|
|
16 |
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
17 |
|
18 |
st.set_page_config(
|
@@ -26,7 +28,8 @@ st.title("GoEmotions Dashboard - Analyzing Emotions in Text")
|
|
26 |
def query(payload):
|
27 |
response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
|
28 |
response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
|
29 |
-
|
|
|
30 |
|
31 |
# Define color map for each emotion category
|
32 |
color_map = {
|
@@ -64,6 +67,7 @@ color_map = {
|
|
64 |
# Labels for Hate Speech Classification
|
65 |
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "Inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}
|
66 |
|
|
|
67 |
# Define default options
|
68 |
|
69 |
default_options = [
|
@@ -100,18 +104,16 @@ if submit:
|
|
100 |
|
101 |
# Call API and get predicted probabilities for each emotion category and hate speech classification
|
102 |
payload = {"inputs": text_input, "options": {"wait_for_model": True, "use_cache": True}}
|
103 |
-
response_ED, response_HS = query(payload)
|
104 |
predicted_probabilities_ED = response_ED[0]
|
105 |
predicted_probabilities_HS = response_HS[0]
|
|
|
106 |
|
107 |
-
ED, _, HS = st.columns([
|
108 |
|
109 |
with ED:
|
110 |
-
# Sort the predicted probabilities in descending order
|
111 |
-
sorted_probs_ED = sorted(predicted_probabilities_ED, key=lambda x: x['score'], reverse=True)
|
112 |
-
|
113 |
# Get the top 4 emotion categories and their scores
|
114 |
-
top_emotions =
|
115 |
top_scores = [e['score'] for e in top_emotions]
|
116 |
|
117 |
# Normalize the scores so that they add up to 100%
|
@@ -160,6 +162,7 @@ if submit:
|
|
160 |
|
161 |
with _:
|
162 |
st.text("")
|
|
|
163 |
|
164 |
with HS:
|
165 |
# Display Hate Speech Classification
|
@@ -172,9 +175,25 @@ if submit:
|
|
172 |
st.image(f"assets/{hate_detection}.jpg", width=200)
|
173 |
st.text("")
|
174 |
st.text("")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
st.text("")
|
|
|
|
|
176 |
st.text("")
|
177 |
-
st.
|
|
|
|
|
|
|
|
|
178 |
|
179 |
|
180 |
|
|
|
13 |
# API_URL_ED = "https://api-inference.huggingface.co/models/j-hartmann/emotion-english-distilroberta-base" #alternate ED model(slow loading on first run)
|
14 |
API_URL_ED = "https://api-inference.huggingface.co/models/bhadresh-savani/bert-base-go-emotion"
|
15 |
API_URL_HS = "https://api-inference.huggingface.co/models/IMSyPP/hate_speech_en"
|
16 |
+
API_URL_SD = "https://api-inference.huggingface.co/models/NLP-LTU/bertweet-large-sexism-detector"
|
17 |
+
|
18 |
headers = {"Authorization": f"Bearer {HF_API_KEY}"}
|
19 |
|
20 |
st.set_page_config(
|
|
|
28 |
def query(payload):
|
29 |
response_ED = requests.request("POST", API_URL_ED, headers=headers, json=payload)
|
30 |
response_HS = requests.request("POST", API_URL_HS, headers=headers, json=payload)
|
31 |
+
response_SD = requests.request("POST", API_URL_SD, headers=headers, json=payload)
|
32 |
+
return (json.loads(response_ED.content.decode("utf-8")),json.loads(response_HS.content.decode("utf-8")),json.loads(response_SD.content.decode("utf-8")))
|
33 |
|
34 |
# Define color map for each emotion category
|
35 |
color_map = {
|
|
|
67 |
# Labels for Hate Speech Classification
|
68 |
label_hs = {"LABEL_0": "Acceptable", "LABEL_1": "Inappropriate", "LABEL_2": "Offensive", "LABEL_3": "Violent"}
|
69 |
|
70 |
+
|
71 |
# Define default options
|
72 |
|
73 |
default_options = [
|
|
|
104 |
|
105 |
# Call API and get predicted probabilities for each emotion category and hate speech classification
|
106 |
payload = {"inputs": text_input, "options": {"wait_for_model": True, "use_cache": True}}
|
107 |
+
response_ED, response_HS, response_SD = query(payload)
|
108 |
predicted_probabilities_ED = response_ED[0]
|
109 |
predicted_probabilities_HS = response_HS[0]
|
110 |
+
predicted_probabilities_SD = response_SD[0]
|
111 |
|
112 |
+
ED, _, HS, __, SD = st.columns([4,1,2,1,2])
|
113 |
|
114 |
with ED:
|
|
|
|
|
|
|
115 |
# Get the top 4 emotion categories and their scores
|
116 |
+
top_emotions = predicted_probabilities_ED[:4]
|
117 |
top_scores = [e['score'] for e in top_emotions]
|
118 |
|
119 |
# Normalize the scores so that they add up to 100%
|
|
|
162 |
|
163 |
with _:
|
164 |
st.text("")
|
165 |
+
|
166 |
|
167 |
with HS:
|
168 |
# Display Hate Speech Classification
|
|
|
175 |
st.image(f"assets/{hate_detection}.jpg", width=200)
|
176 |
st.text("")
|
177 |
st.text("")
|
178 |
+
st.markdown(f"#### The given text is: {hate_detection}")
|
179 |
+
|
180 |
+
with __:
|
181 |
+
st.text("")
|
182 |
+
|
183 |
+
with SD:
|
184 |
+
st.text("")
|
185 |
+
st.text("")
|
186 |
+
st.text("")
|
187 |
+
st.subheader("Sexism Detection")
|
188 |
st.text("")
|
189 |
+
label_SD = predicted_probabilities_SD[0]['label'].capitalize()
|
190 |
+
st.image(f"assets/{label_SD}.jpg", width=200)
|
191 |
st.text("")
|
192 |
+
st.text("")
|
193 |
+
st.markdown(f"#### The given text is: {label_SD}")
|
194 |
+
|
195 |
+
|
196 |
+
|
197 |
|
198 |
|
199 |
|
assets/Not Sexist.jpg
ADDED
assets/Sexist.jpg
ADDED