SudhanshuBlaze commited on
Commit
d143dc0
·
1 Parent(s): 5e82ab8

update readme

Browse files
Files changed (1) hide show
  1. README.md +58 -1
README.md CHANGED
@@ -10,4 +10,61 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  license: mit
11
  ---
12
 
13
+ # Neural image style transfer
14
+
15
+ Neural style transfer is an optimization technique used to take two images—a content image and a style reference image (such as an artwork by a famous painter)—and blend them together so the output image looks like the content image, but “painted” in the style of the style reference image.
16
+
17
+ This is implemented by optimizing the output image to match the content statistics of the content image and the style statistics of the style reference image. These statistics are extracted from the images using a convolutional network.
18
+
19
+ ## Example
20
+
21
+ ## Goal
22
+
23
+ In this project we are buidling **streamlit** demo for Fast arbitrary image style transfer using a **pretrained** Image Stylization model from **TensorFlow Hub**. To use it, simply upload a content image and style image.
24
+
25
+ ## Deployed app
26
+
27
+ The app is deployed on Huggingface **Spaces**: [Click here for live demo](https://huggingface.co/spaces/SudhanshuBlaze/neural-style-transfer-streamlit)
28
+
29
+ ### Project Structure
30
+
31
+ ```bash
32
+ Neural Style Transfer Project
33
+
34
+ ├── app.py
35
+ ├── requirements.txt
36
+ └── examples
37
+ ```
38
+
39
+ ### Project Requirements
40
+
41
+ - Python3
42
+ - git
43
+
44
+ ### Project Steps
45
+
46
+ - `Step 1`: Cloning the repo
47
+
48
+ ```bash
49
+ git clone https://github.com/DigitalProductschool/AI-Makerspace.git
50
+ ```
51
+
52
+ - `Step 2`: Changing working directory to TextAutocomplete-Streamlit
53
+
54
+ ```bash
55
+ cd AI-Makerspace/HuggingFace/StyleTransfer
56
+ ```
57
+
58
+ - `Step 3`: Installing dependencies using pip3
59
+
60
+ ```bash
61
+ pip3 install -r requirements.txt
62
+ ```
63
+
64
+ - `Step 4`: Running the streamlit web app
65
+
66
+ ```bash
67
+ streamlit run app.py
68
+ ```
69
+
70
+ #### Now go to http://localhost:8501/ to test out this streamlit web-app