Sang-Hoon Lee commited on
Commit
6d99823
·
1 Parent(s): aca1ebd

Delete app.py.py

Browse files
Files changed (1) hide show
  1. app.py.py +0 -236
app.py.py DELETED
@@ -1,236 +0,0 @@
1
- import os
2
- import torch
3
- import argparse
4
- import numpy as np
5
- from scipy.io.wavfile import write
6
- import torchaudio
7
- import utils
8
- from Mels_preprocess import MelSpectrogramFixed
9
-
10
- from hierspeechpp_speechsynthesizer import (
11
- SynthesizerTrn
12
- )
13
- from ttv_v1.text import text_to_sequence
14
- from ttv_v1.t2w2v_transformer import SynthesizerTrn as Text2W2V
15
- from speechsr24k.speechsr import SynthesizerTrn as SpeechSR24
16
- from speechsr48k.speechsr import SynthesizerTrn as SpeechSR48
17
- from denoiser.generator import MPNet
18
- from denoiser.infer import denoise
19
-
20
- import gradio as gr
21
-
22
- def load_text(fp):
23
- with open(fp, 'r') as f:
24
- filelist = [line.strip() for line in f.readlines()]
25
- return filelist
26
- def load_checkpoint(filepath, device):
27
- print(filepath)
28
- assert os.path.isfile(filepath)
29
- print("Loading '{}'".format(filepath))
30
- checkpoint_dict = torch.load(filepath, map_location=device)
31
- print("Complete.")
32
- return checkpoint_dict
33
- def get_param_num(model):
34
- num_param = sum(param.numel() for param in model.parameters())
35
- return num_param
36
- def intersperse(lst, item):
37
- result = [item] * (len(lst) * 2 + 1)
38
- result[1::2] = lst
39
- return result
40
- def add_blank_token(text):
41
-
42
- text_norm = intersperse(text, 0)
43
- text_norm = torch.LongTensor(text_norm)
44
- return text_norm
45
-
46
- def tts(text,
47
- prompt,
48
- ttv_temperature,
49
- vc_temperature,
50
- duratuion_temperature,
51
- duratuion_length,
52
- denoise_ratio,
53
- random_seed):
54
-
55
- torch.manual_seed(random_seed)
56
- torch.cuda.manual_seed(random_seed)
57
- np.random.seed(random_seed)
58
-
59
- text_len = len(text)
60
- if text_len > 200:
61
- raise gr.Error("Text length limited to 200 characters for this demo. Current text length is " + str(text_len))
62
-
63
- else:
64
- text = text_to_sequence(str(text), ["english_cleaners2"])
65
-
66
- token = add_blank_token(text).unsqueeze(0).cuda()
67
- token_length = torch.LongTensor([token.size(-1)]).cuda()
68
-
69
- # Prompt load
70
- # sample_rate, audio = prompt
71
- # audio = torch.FloatTensor([audio]).cuda()
72
- # if audio.shape[0] != 1:
73
- # audio = audio[:1,:]
74
- # audio = audio / 32768
75
- audio, sample_rate = torchaudio.load(prompt)
76
-
77
- # support only single channel
78
-
79
- # Resampling
80
- if sample_rate != 16000:
81
- audio = torchaudio.functional.resample(audio, sample_rate, 16000, resampling_method="kaiser_window")
82
-
83
- # We utilize a hop size of 320 but denoiser uses a hop size of 400 so we utilize a hop size of 1600
84
- ori_prompt_len = audio.shape[-1]
85
- p = (ori_prompt_len // 1600 + 1) * 1600 - ori_prompt_len
86
- audio = torch.nn.functional.pad(audio, (0, p), mode='constant').data
87
-
88
- # If you have a memory issue during denosing the prompt, try to denoise the prompt with cpu before TTS
89
- # We will have a plan to replace a memory-efficient denoiser
90
- if denoise == 0:
91
- audio = torch.cat([audio.cuda(), audio.cuda()], dim=0)
92
- else:
93
- with torch.no_grad():
94
-
95
- if ori_prompt_len > 80000:
96
- denoised_audio = []
97
- for i in range((ori_prompt_len//80000)):
98
- denoised_audio.append(denoise(audio.squeeze(0).cuda()[i*80000:(i+1)*80000], denoiser, hps_denoiser))
99
-
100
- denoised_audio.append(denoise(audio.squeeze(0).cuda()[(i+1)*80000:], denoiser, hps_denoiser))
101
- denoised_audio = torch.cat(denoised_audio, dim=1)
102
- else:
103
- denoised_audio = denoise(audio.squeeze(0).cuda(), denoiser, hps_denoiser)
104
-
105
- audio = torch.cat([audio.cuda(), denoised_audio[:,:audio.shape[-1]]], dim=0)
106
-
107
- audio = audio[:,:ori_prompt_len] # 20231108 We found that large size of padding decreases a performance so we remove the paddings after denosing.
108
-
109
- if audio.shape[-1]<48000:
110
- audio = torch.cat([audio,audio,audio,audio,audio], dim=1)
111
-
112
- src_mel = mel_fn(audio.cuda())
113
-
114
- src_length = torch.LongTensor([src_mel.size(2)]).to(device)
115
- src_length2 = torch.cat([src_length,src_length], dim=0)
116
-
117
- ## TTV (Text --> W2V, F0)
118
- with torch.no_grad():
119
- w2v_x, pitch = text2w2v.infer_noise_control(token, token_length, src_mel, src_length2,
120
- noise_scale=ttv_temperature, noise_scale_w=duratuion_temperature,
121
- length_scale=duratuion_length, denoise_ratio=denoise_ratio)
122
- src_length = torch.LongTensor([w2v_x.size(2)]).cuda()
123
-
124
- pitch[pitch<torch.log(torch.tensor([55]).cuda())] = 0
125
-
126
- ## Hierarchical Speech Synthesizer (W2V, F0 --> 16k Audio)
127
- converted_audio = \
128
- net_g.voice_conversion_noise_control(w2v_x, src_length, src_mel, src_length2, pitch, noise_scale=vc_temperature, denoise_ratio=denoise_ratio)
129
-
130
- converted_audio = speechsr(converted_audio)
131
-
132
- converted_audio = converted_audio.squeeze()
133
-
134
- converted_audio = converted_audio / (torch.abs(converted_audio).max()) * 32767.0 * 0.999
135
- converted_audio = converted_audio.cpu().numpy().astype('int16')
136
-
137
- write('output.wav', 48000, converted_audio)
138
- return 'output.wav'
139
-
140
- def main():
141
- print('Initializing Inference Process..')
142
-
143
- parser = argparse.ArgumentParser()
144
- parser.add_argument('--input_prompt', default='example/steve-jobs-2005.wav')
145
- parser.add_argument('--input_txt', default='example/abstract.txt')
146
- parser.add_argument('--output_dir', default='output')
147
- parser.add_argument('--ckpt', default='./logs/hierspeechpp_eng_kor/hierspeechpp_v2_ckpt.pth')
148
- parser.add_argument('--ckpt_text2w2v', '-ct', help='text2w2v checkpoint path', default='./logs/ttv_libritts_v1/ttv_lt960_ckpt.pth')
149
- parser.add_argument('--ckpt_sr', type=str, default='./speechsr24k/G_340000.pth')
150
- parser.add_argument('--ckpt_sr48', type=str, default='./speechsr48k/G_100000.pth')
151
- parser.add_argument('--denoiser_ckpt', type=str, default='denoiser/g_best')
152
- parser.add_argument('--scale_norm', type=str, default='max')
153
- parser.add_argument('--output_sr', type=float, default=48000)
154
- parser.add_argument('--noise_scale_ttv', type=float,
155
- default=0.333)
156
- parser.add_argument('--noise_scale_vc', type=float,
157
- default=0.333)
158
- parser.add_argument('--denoise_ratio', type=float,
159
- default=0.8)
160
- parser.add_argument('--duration_ratio', type=float,
161
- default=0.8)
162
- parser.add_argument('--seed', type=int,
163
- default=1111)
164
- a = parser.parse_args()
165
-
166
- global device, hps, hps_t2w2v,h_sr,h_sr48, hps_denoiser
167
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
168
-
169
- hps = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt)[0], 'config.json'))
170
- hps_t2w2v = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_text2w2v)[0], 'config.json'))
171
- h_sr = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr)[0], 'config.json') )
172
- h_sr48 = utils.get_hparams_from_file(os.path.join(os.path.split(a.ckpt_sr48)[0], 'config.json') )
173
- hps_denoiser = utils.get_hparams_from_file(os.path.join(os.path.split(a.denoiser_ckpt)[0], 'config.json'))
174
-
175
- global mel_fn, net_g, text2w2v, speechsr, denoiser
176
-
177
- mel_fn = MelSpectrogramFixed(
178
- sample_rate=hps.data.sampling_rate,
179
- n_fft=hps.data.filter_length,
180
- win_length=hps.data.win_length,
181
- hop_length=hps.data.hop_length,
182
- f_min=hps.data.mel_fmin,
183
- f_max=hps.data.mel_fmax,
184
- n_mels=hps.data.n_mel_channels,
185
- window_fn=torch.hann_window
186
- ).cuda()
187
-
188
- net_g = SynthesizerTrn(hps.data.filter_length // 2 + 1,
189
- hps.train.segment_size // hps.data.hop_length,
190
- **hps.model).cuda()
191
- net_g.load_state_dict(torch.load(a.ckpt))
192
- _ = net_g.eval()
193
-
194
- text2w2v = Text2W2V(hps.data.filter_length // 2 + 1,
195
- hps.train.segment_size // hps.data.hop_length,
196
- **hps_t2w2v.model).cuda()
197
- text2w2v.load_state_dict(torch.load(a.ckpt_text2w2v))
198
- text2w2v.eval()
199
-
200
- speechsr = SpeechSR48(h_sr48.data.n_mel_channels,
201
- h_sr48.train.segment_size // h_sr48.data.hop_length,
202
- **h_sr48.model).cuda()
203
- utils.load_checkpoint(a.ckpt_sr48, speechsr, None)
204
- speechsr.eval()
205
-
206
- denoiser = MPNet(hps_denoiser).cuda()
207
- state_dict = load_checkpoint(a.denoiser_ckpt, device)
208
- denoiser.load_state_dict(state_dict['generator'])
209
- denoiser.eval()
210
-
211
- demo_play = gr.Interface(fn = tts,
212
- inputs = [gr.Textbox(max_lines=6, label="Input Text", value="HierSpeech is a zero shot speech synthesis model, which can generate high-quality audio", info="Up to 200 characters"),
213
- gr.Audio(type='filepath', value="./example/3_rick_gt.wav"),
214
- gr.Slider(0,1,0.333),
215
- gr.Slider(0,1,0.333),
216
- gr.Slider(0,1,1.0),
217
- gr.Slider(0.5,2,1.0),
218
- gr.Slider(0,1,0),
219
- gr.Slider(0,9999,1111)],
220
- outputs = 'audio',
221
- title = 'HierSpeech++',
222
- description = '''<div>
223
- <p style="text-align: left"> HierSpeech++ is a zero-shot speech synthesis model.</p>
224
- <p style="text-align: left"> Our model is trained with LibriTTS dataset so this model only supports english. We will release a multi-lingual HierSpeech++ soon.</p>
225
- <p style="text-align: left"> <a href="https://sh-lee-prml.github.io/HierSpeechpp-demo/">[Demo Page]</a> <a href="https://github.com/sh-lee-prml/HierSpeechpp">[Source Code]</a></p>
226
- </div>''',
227
- examples=[["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/3_rick_gt.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
228
- ["HierSpeech is a zero-shot speech synthesis model, which can generate high-quality audio", "./example/ex01_whisper_00359.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
229
- ["Hi there, I'm your new voice clone. Try your best to upload quality audio", "./example/female.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
230
- ["Hello I'm HierSpeech++", "./example/reference_1.wav", 0.333,0.333, 1.0, 1.0, 0, 1111],
231
- ]
232
- )
233
- demo_play.launch(share=True, server_port=8888)
234
-
235
- if __name__ == '__main__':
236
- main()