File size: 21,236 Bytes
6f884cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
import torch
import wandb
import cv2
import torch.nn.functional as F
import numpy as np
from facenet_pytorch import MTCNN
from torchvision import transforms
from dreamsim import dreamsim
from einops import rearrange
import kornia.augmentation as K
import lpips

from pretrained_models.arcface import Backbone
from utils.vis_utils import add_text_to_image
from utils.utils import extract_faces_and_landmarks
import clip


class Loss():
    """
    General purpose loss class. 
    Mainly handles dtype and visualize_every_k.
    keeps current iteration of loss, mainly for visualization purposes.
    """
    def __init__(self, visualize_every_k=-1, dtype=torch.float32, accelerator=None, **kwargs):
        self.visualize_every_k = visualize_every_k
        self.iteration = -1
        self.dtype=dtype
        self.accelerator = accelerator
        
    def __call__(self, **kwargs):
        self.iteration += 1
        return self.forward(**kwargs)


class L1Loss(Loss):
    """
    Simple L1 loss between predicted_pixel_values and pixel_values
    
    Args:
        predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
        encoder_pixel_values (torch.Tesnor): The input image to the encoder
    """
    def forward(
        self, 
        predict: torch.Tensor,
        target: torch.Tensor,
        **kwargs
    ) -> torch.Tensor:
        return F.l1_loss(predict, target, reduction="mean")


class DreamSIMLoss(Loss):
    """DreamSIM loss between predicted_pixel_values and pixel_values.
    DreamSIM is similar to LPIPS (https://dreamsim-nights.github.io/) but is trained on more human defined similarity dataset
    DreamSIM expects an RGB image of size 224x224 and values between 0 and 1. So we need to normalize the input images to 0-1 range and resize them to 224x224.
    Args:
        predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
        encoder_pixel_values (torch.Tesnor): The input image to the encoder
    """
    def __init__(self, device: str='cuda:0', **kwargs):
        super().__init__(**kwargs)
        self.model, _ = dreamsim(pretrained=True, device=device)
        self.model.to(dtype=self.dtype, device=device)
        self.model = self.accelerator.prepare(self.model)
        self.transforms = transforms.Compose([
            transforms.Lambda(lambda x: (x + 1) / 2),
            transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC)])

    def forward(
        self,
        predicted_pixel_values: torch.Tensor,
        encoder_pixel_values: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        predicted_pixel_values.to(dtype=self.dtype)
        encoder_pixel_values.to(dtype=self.dtype)
        return self.model(self.transforms(predicted_pixel_values), self.transforms(encoder_pixel_values)).mean()


class LPIPSLoss(Loss):
    """LPIPS loss between predicted_pixel_values and pixel_values.
    Args:
        predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
        encoder_pixel_values (torch.Tesnor): The input image to the encoder
    """
    def __init__(self,  **kwargs):
        super().__init__(**kwargs)
        self.model = lpips.LPIPS(net='vgg')
        self.model.to(dtype=self.dtype, device=self.accelerator.device)
        self.model = self.accelerator.prepare(self.model)

    def forward(self, predict, target, **kwargs):
        predict.to(dtype=self.dtype)
        target.to(dtype=self.dtype)
        return self.model(predict, target).mean()


class LCMVisualization(Loss):
    """Dummy loss used to visualize the LCM outputs
    Args:
        predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
        pixel_values (torch.Tensor): The input image to the decoder
        encoder_pixel_values (torch.Tesnor): The input image to the encoder
    """
    def forward(
        self, 
        predicted_pixel_values: torch.Tensor,
        pixel_values: torch.Tensor,
        encoder_pixel_values: torch.Tensor,
        timesteps: torch.Tensor,
        **kwargs,
    ) -> None:
        if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
            predicted_pixel_values = rearrange(predicted_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
            pixel_values = rearrange(pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
            encoder_pixel_values = rearrange(encoder_pixel_values, "n c h w -> (n h) w c").detach().cpu().numpy()
            image = np.hstack([encoder_pixel_values, pixel_values, predicted_pixel_values])
            for tracker in self.accelerator.trackers:
                if tracker.name == 'wandb':
                    tracker.log({"TrainVisualization": wandb.Image(image, caption=f"Encoder Input Image, Decoder Input Image, Predicted LCM Image. Timesteps {timesteps.cpu().tolist()}")})
        return torch.tensor(0.0)


class L2Loss(Loss):
    """
    Regular diffusion loss between predicted noise and target noise.
    Args:
        predicted_noise (torch.Tensor): noise predicted by the diffusion model
        target_noise (torch.Tensor): actual noise added to the image.
    """
    def forward(
        self,
        predict: torch.Tensor,
        target: torch.Tensor,
        weights: torch.Tensor = None,
        **kwargs
    ) -> torch.Tensor:
        if weights is not None:
            loss = (predict.float() - target.float()).pow(2) * weights
            return loss.mean()
        return F.mse_loss(predict.float(), target.float(), reduction="mean")


class HuberLoss(Loss):
    """Huber loss between predicted_pixel_values and pixel_values.
    Args:
        predicted_pixel_values (torch.Tensor): The predicted pixel values using 1 step LCM and the VAE decoder.
        encoder_pixel_values (torch.Tesnor): The input image to the encoder
    """
    def __init__(self, huber_c=0.001, **kwargs):
        super().__init__(**kwargs)
        self.huber_c = huber_c

    def forward(
        self,
        predict: torch.Tensor,
        target: torch.Tensor,
        weights: torch.Tensor = None,
        **kwargs
    ) -> torch.Tensor:
        loss = torch.sqrt((predict.float() - target.float()) ** 2 + self.huber_c**2) - self.huber_c
        if weights is not None:
            return (loss * weights).mean()
        return loss.mean()


class WeightedNoiseLoss(Loss):
    """
    Weighted diffusion loss between predicted noise and target noise.
    Args:
        predicted_noise (torch.Tensor): noise predicted by the diffusion model
        target_noise (torch.Tensor): actual noise added to the image.
        loss_batch_weights (torch.Tensor): weighting for each batch item. Can be used to e.g. zero-out loss for InstantID training if keypoint extraction fails.
    """
    def forward(
        self,
        predict: torch.Tensor,
        target: torch.Tensor,
        weights,
        **kwargs
    ) -> torch.Tensor:
        return F.mse_loss(predict.float() * weights, target.float() * weights, reduction="mean")


class IDLoss(Loss):
    """
    Use pretrained facenet model to extract features from the face of the predicted image and target image.
    Facenet expects 112x112 images, so we crop the face using MTCNN and resize it to 112x112.
    Then we use the cosine similarity between the features to calculate the loss. (The cosine similarity is 1 - cosine distance).
    Also notice that the outputs of facenet are normalized so the dot product is the same as cosine distance.
    """
    def __init__(self, pretrained_arcface_path: str, skip_not_found=True, **kwargs):
        super().__init__(**kwargs)
        assert pretrained_arcface_path is not None, "please pass `pretrained_arcface_path` in the losses config. You can download the pretrained model from "\
            "https://drive.google.com/file/d/1KW7bjndL3QG3sxBbZxreGHigcCCpsDgn/view?usp=sharing"
        self.mtcnn = MTCNN(device=self.accelerator.device)
        self.mtcnn.forward = self.mtcnn.detect
        self.facenet_input_size = 112  # Has to be 112, can't find weights for 224 size.
        self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
        self.facenet.load_state_dict(torch.load(pretrained_arcface_path))
        self.face_pool = torch.nn.AdaptiveAvgPool2d((self.facenet_input_size, self.facenet_input_size))
        self.facenet.requires_grad_(False)
        self.facenet.eval()
        self.facenet.to(device=self.accelerator.device, dtype=self.dtype)  # not implemented for half precision
        self.face_pool.to(device=self.accelerator.device, dtype=self.dtype)  # not implemented for half precision
        self.visualization_resize = transforms.Resize((self.facenet_input_size, self.facenet_input_size), interpolation=transforms.InterpolationMode.BICUBIC)
        self.reference_facial_points = np.array([[38.29459953, 51.69630051],
                                                 [72.53179932, 51.50139999],
                                                 [56.02519989, 71.73660278],
                                                 [41.54930115, 92.3655014],
                                                 [70.72990036, 92.20410156]
                                                 ])  # Original points are 112 * 96 added 8 to the x axis to make it 112 * 112
        self.facenet, self.face_pool, self.mtcnn = self.accelerator.prepare(self.facenet, self.face_pool, self.mtcnn)

        self.skip_not_found = skip_not_found
    
    def extract_feats(self, x: torch.Tensor):
        """
        Extract features from the face of the image using facenet model.
        """
        x = self.face_pool(x)
        x_feats = self.facenet(x)

        return x_feats

    def forward(
        self, 
        predicted_pixel_values: torch.Tensor,
        encoder_pixel_values: torch.Tensor,
        timesteps: torch.Tensor,
        **kwargs
    ):
        encoder_pixel_values = encoder_pixel_values.to(dtype=self.dtype)
        predicted_pixel_values = predicted_pixel_values.to(dtype=self.dtype)

        predicted_pixel_values_face, predicted_invalid_indices = extract_faces_and_landmarks(predicted_pixel_values, mtcnn=self.mtcnn)
        with torch.no_grad():
            encoder_pixel_values_face, source_invalid_indices = extract_faces_and_landmarks(encoder_pixel_values, mtcnn=self.mtcnn)
        
        if self.skip_not_found:
            valid_indices = []
            for i in range(predicted_pixel_values.shape[0]):
                if i not in predicted_invalid_indices and i not in source_invalid_indices:
                    valid_indices.append(i)
        else:
            valid_indices = list(range(predicted_pixel_values))
            
        valid_indices = torch.tensor(valid_indices).to(device=predicted_pixel_values.device)

        if len(valid_indices) == 0:
            loss =  (predicted_pixel_values_face * 0.0).mean()  # It's done this way so the `backwards` will delete the computation graph of the predicted_pixel_values.
            if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
                self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
            return loss

        with torch.no_grad():
            pixel_values_feats = self.extract_feats(encoder_pixel_values_face[valid_indices])
            
        predicted_pixel_values_feats = self.extract_feats(predicted_pixel_values_face[valid_indices])
        loss = 1 - torch.einsum("bi,bi->b", pixel_values_feats, predicted_pixel_values_feats)

        if self.visualize_every_k > 0 and self.iteration % self.visualize_every_k == 0:
            self.visualize(predicted_pixel_values, encoder_pixel_values, predicted_pixel_values_face, encoder_pixel_values_face, timesteps, valid_indices, loss)
        return loss.mean()
    
    def visualize(
        self,
        predicted_pixel_values: torch.Tensor,
        encoder_pixel_values: torch.Tensor,
        predicted_pixel_values_face: torch.Tensor,
        encoder_pixel_values_face: torch.Tensor,
        timesteps: torch.Tensor,
        valid_indices: torch.Tensor,
        loss: torch.Tensor,
    ) -> None:
        small_predicted_pixel_values = (rearrange(self.visualization_resize(predicted_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy())
        small_pixle_values = rearrange(self.visualization_resize(encoder_pixel_values), "n c h w -> (n h) w c").detach().cpu().numpy() 
        small_predicted_pixel_values_face = rearrange(self.visualization_resize(predicted_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
        small_pixle_values_face = rearrange(self.visualization_resize(encoder_pixel_values_face), "n c h w -> (n h) w c").detach().cpu().numpy()
        
        small_predicted_pixel_values = add_text_to_image(((small_predicted_pixel_values * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Images", add_below=False)
        small_pixle_values = add_text_to_image(((small_pixle_values * 0.5 + 0.5) * 255).astype(np.uint8), "Target Images", add_below=False)
        small_predicted_pixel_values_face = add_text_to_image(((small_predicted_pixel_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Pred Faces", add_below=False)
        small_pixle_values_face = add_text_to_image(((small_pixle_values_face * 0.5 + 0.5) * 255).astype(np.uint8), "Target Faces", add_below=False)


        final_image = np.hstack([small_predicted_pixel_values, small_pixle_values, small_predicted_pixel_values_face, small_pixle_values_face])
        for tracker in self.accelerator.trackers:
            if tracker.name == 'wandb':
                tracker.log({"IDLoss Visualization": wandb.Image(final_image, caption=f"loss: {loss.cpu().tolist()} timesteps: {timesteps.cpu().tolist()}, valid_indices: {valid_indices.cpu().tolist()}")})


class ImageAugmentations(torch.nn.Module):
    # Standard image augmentations used for CLIP loss to discourage adversarial outputs.
    def __init__(self, output_size, augmentations_number, p=0.7):
        super().__init__()
        self.output_size = output_size
        self.augmentations_number = augmentations_number

        self.augmentations = torch.nn.Sequential(
            K.RandomAffine(degrees=15, translate=0.1, p=p, padding_mode="border"),  # type: ignore
            K.RandomPerspective(0.7, p=p),
        )

        self.avg_pool = torch.nn.AdaptiveAvgPool2d((self.output_size, self.output_size))

        self.device = None

    def forward(self, input):
        """Extents the input batch with augmentations
        If the input is consists of images [I1, I2] the extended augmented output
        will be [I1_resized, I2_resized, I1_aug1, I2_aug1, I1_aug2, I2_aug2 ...]
        Args:
            input ([type]): input batch of shape [batch, C, H, W]
        Returns:
            updated batch: of shape [batch * augmentations_number, C, H, W]
        """
        # We want to multiply the number of images in the batch in contrast to regular augmantations
        # that do not change the number of samples in the batch)
        resized_images = self.avg_pool(input)
        resized_images = torch.tile(resized_images, dims=(self.augmentations_number, 1, 1, 1))

        batch_size = input.shape[0]
        # We want at least one non augmented image
        non_augmented_batch = resized_images[:batch_size]
        augmented_batch = self.augmentations(resized_images[batch_size:])
        updated_batch = torch.cat([non_augmented_batch, augmented_batch], dim=0)

        return updated_batch


class CLIPLoss(Loss):
    def __init__(self, augmentations_number: int = 4, **kwargs):
        super().__init__(**kwargs)

        self.clip_model, clip_preprocess = clip.load("ViT-B/16", device=self.accelerator.device, jit=False)

        self.clip_model.device = None

        self.clip_model.eval().requires_grad_(False)
        
        self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
                                              clip_preprocess.transforms[:2] +                                      # to match CLIP input scale assumptions
                                              clip_preprocess.transforms[4:])                                       # + skip convert PIL to tensor

        self.clip_size = self.clip_model.visual.input_resolution

        self.clip_normalize = transforms.Normalize(
            mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711]
        )

        self.image_augmentations = ImageAugmentations(output_size=self.clip_size,
                                                      augmentations_number=augmentations_number)
        
        self.clip_model, self.image_augmentations = self.accelerator.prepare(self.clip_model, self.image_augmentations)

    def forward(self, decoder_prompts, predicted_pixel_values: torch.Tensor, **kwargs) -> torch.Tensor:

        if not isinstance(decoder_prompts, list):
            decoder_prompts = [decoder_prompts]

        tokens = clip.tokenize(decoder_prompts).to(predicted_pixel_values.device)
        image  = self.preprocess(predicted_pixel_values)

        logits_per_image, _ = self.clip_model(image, tokens)

        logits_per_image = torch.diagonal(logits_per_image)

        return (1. - logits_per_image / 100).mean()


class DINOLoss(Loss):
    def __init__(
            self,
            dino_model,
            dino_preprocess,
            output_hidden_states: bool = False,
            center_momentum: float = 0.9,
            student_temp: float = 0.1,
            teacher_temp: float = 0.04,
            warmup_teacher_temp: float = 0.04,
            warmup_teacher_temp_epochs: int = 30,
            **kwargs):
        super().__init__(**kwargs)

        self.dino_model = dino_model
        self.output_hidden_states = output_hidden_states
        self.rescale_factor = dino_preprocess.rescale_factor

        # Un-normalize from [-1.0, 1.0] (SD output) to [0, 1].
        self.preprocess = transforms.Compose(
            [
                transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0]),
                transforms.Resize(size=256),
                transforms.CenterCrop(size=(224, 224)),
                transforms.Normalize(mean=dino_preprocess.image_mean, std=dino_preprocess.image_std)
            ]
        )

        self.student_temp = student_temp
        self.teacher_temp = teacher_temp
        self.center_momentum = center_momentum
        self.center = torch.zeros(1, 257, 1024).to(self.accelerator.device, dtype=self.dtype)

        # TODO: add temp, now fixed to 0.04
        # we apply a warm up for the teacher temperature because
        # a too high temperature makes the training instable at the beginning
        # self.teacher_temp_schedule = np.concatenate((
        #     np.linspace(warmup_teacher_temp,
        #                 teacher_temp, warmup_teacher_temp_epochs),
        #     np.ones(nepochs - warmup_teacher_temp_epochs) * teacher_temp
        # ))

        self.dino_model = self.accelerator.prepare(self.dino_model)

    def forward(
            self,
            target: torch.Tensor,
            predict: torch.Tensor,
            weights: torch.Tensor = None,
            **kwargs) -> torch.Tensor:

        predict = self.preprocess(predict)
        target = self.preprocess(target)

        encoder_input = torch.cat([target, predict]).to(self.dino_model.device, dtype=self.dino_model.dtype)

        if self.output_hidden_states:
            raise ValueError("Output hidden states not supported for DINO loss.")
            image_enc_hidden_states = self.dino_model(encoder_input, output_hidden_states=True).hidden_states[-2]
        else:
            image_enc_hidden_states = self.dino_model(encoder_input).last_hidden_state

        teacher_output, student_output = image_enc_hidden_states.chunk(2, dim=0)         # [B, 257, 1024]

        student_out = student_output.float() / self.student_temp

        # teacher centering and sharpening
        # temp = self.teacher_temp_schedule[epoch]
        temp = self.teacher_temp
        teacher_out = F.softmax((teacher_output.float() - self.center) / temp, dim=-1)
        teacher_out = teacher_out.detach()

        loss = torch.sum(-teacher_out * F.log_softmax(student_out, dim=-1), dim=-1, keepdim=True)
        # self.update_center(teacher_output)

        if weights is not None:
            loss = loss * weights
            return loss.mean()
        return loss.mean()

    @torch.no_grad()
    def update_center(self, teacher_output):
        """
        Update center used for teacher output.
        """
        batch_center = torch.sum(teacher_output, dim=0, keepdim=True)
        self.accelerator.reduce(batch_center, reduction="sum")
        batch_center = batch_center / (len(teacher_output) * self.accelerator.num_processes)

        # ema update
        self.center = self.center * self.center_momentum + batch_center * (1 - self.center_momentum)