SunderAli17's picture
Create parser.py
6caf646 verified
import argparse
import os
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Train Consistency Encoder.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
# parser.add_argument(
# "--instance_data_dir",
# type=str,
# required=True,
# help=("A folder containing the training data. "),
# )
parser.add_argument(
"--data_config_path",
type=str,
required=True,
help=("A folder containing the training data. "),
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument(
"--image_column",
type=str,
default="image",
help="The column of the dataset containing the target image. By "
"default, the standard Image Dataset maps out 'file_name' "
"to 'image'.",
)
parser.add_argument(
"--caption_column",
type=str,
default=None,
help="The column of the dataset containing the instance prompt for each image",
)
parser.add_argument("--repeats", type=int, default=1, help="How many times to repeat the training data.")
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance, e.g. 'photo of a TOK dog', 'in the style of TOK'",
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
help="A prompt that is used during validation to verify that the model is learning.",
)
parser.add_argument(
"--num_train_vis_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--num_validation_images",
type=int,
default=2,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_vis_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--train_vis_steps",
type=int,
default=500,
help=(
"Run dreambooth validation every X steps. Dreambooth validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--vis_lcm",
type=bool,
default=True,
help=(
"Also log results of LCM inference",
),
)
parser.add_argument(
"--output_dir",
type=str,
default="lora-dreambooth-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--save_only_encoder", action="store_true", help="Only save the encoder and not the full accelerator state")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--freeze_encoder_unet", action="store_true", help="Don't train encoder unet")
parser.add_argument("--predict_word_embedding", action="store_true", help="Predict word embeddings in addition to KV features")
parser.add_argument("--ip_adapter_feature_extractor_path", type=str, help="Path to pre-trained feature extractor for IP-adapter")
parser.add_argument("--ip_adapter_model_path", type=str, help="Path to pre-trained IP-adapter.")
parser.add_argument("--ip_adapter_tokens", type=int, default=16, help="Number of tokens to use in IP-adapter cross attention mechanism")
parser.add_argument("--optimize_adapter", action="store_true", help="Optimize IP-adapter parameters (projector + cross-attention layers)")
parser.add_argument("--adapter_attention_scale", type=float, default=1.0, help="Relative strength of the adapter cross attention layers")
parser.add_argument("--adapter_lr", type=float, help="Learning rate for the adapter parameters. Defaults to the global LR if not provided")
parser.add_argument("--noisy_encoder_input", action="store_true", help="Noise the encoder input to the same step as the decoder?")
# related to CFG:
parser.add_argument("--adapter_drop_chance", type=float, default=0.0, help="Chance to drop adapter condition input during training")
parser.add_argument("--text_drop_chance", type=float, default=0.0, help="Chance to drop text condition during training")
parser.add_argument("--kv_drop_chance", type=float, default=0.0, help="Chance to drop KV condition during training")
parser.add_argument(
"--resolution",
type=int,
default=1024,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--crops_coords_top_left_h",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--crops_coords_top_left_w",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=5,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument("--max_timesteps_for_x0_loss", type=int, default=1001)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
parser.add_argument(
"--adam_epsilon",
type=float,
default=1e-08,
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
)
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="wandb",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--rank",
type=int,
default=4,
help=("The dimension of the LoRA update matrices."),
)
parser.add_argument(
"--pretrained_lcm_lora_path",
type=str,
default="latent-consistency/lcm-lora-sdxl",
help=("Path for lcm lora pretrained"),
)
parser.add_argument(
"--losses_config_path",
type=str,
required=True,
help=("A yaml file containing losses to use and their weights."),
)
parser.add_argument(
"--lcm_every_k_steps",
type=int,
default=-1,
help="How often to run lcm. If -1, lcm is not run."
)
parser.add_argument(
"--lcm_batch_size",
type=int,
default=1,
help="Batch size for lcm."
)
parser.add_argument(
"--lcm_max_timestep",
type=int,
default=1000,
help="Max timestep to use with LCM."
)
parser.add_argument(
"--lcm_sample_scale_every_k_steps",
type=int,
default=-1,
help="How often to change lcm scale. If -1, scale is fixed at 1."
)
parser.add_argument(
"--lcm_min_scale",
type=float,
default=0.1,
help="When sampling lcm scale, the minimum scale to use."
)
parser.add_argument(
"--scale_lcm_by_max_step",
action="store_true",
help="scale LCM lora alpha linearly by the maximal timestep sampled that iteration"
)
parser.add_argument(
"--lcm_sample_full_lcm_prob",
type=float,
default=0.2,
help="When sampling lcm scale, the probability of using full lcm (scale of 1)."
)
parser.add_argument(
"--run_on_cpu",
action="store_true",
help="whether to run on cpu or not"
)
parser.add_argument(
"--experiment_name",
type=str,
help=("A short description of the experiment to add to the wand run log. "),
)
parser.add_argument("--encoder_lora_rank", type=int, default=0, help="Rank of Lora in unet encoder. 0 means no lora")
parser.add_argument("--kvcopy_lora_rank", type=int, default=0, help="Rank of lora in the kvcopy modules. 0 means no lora")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
args.optimizer = "AdamW"
return args