Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create ip_adapter.py
Browse files- module/ip_adapter/ip_adapter.py +236 -0
module/ip_adapter/ip_adapter.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from typing import List
|
4 |
+
from collections import namedtuple, OrderedDict
|
5 |
+
|
6 |
+
def is_torch2_available():
|
7 |
+
return hasattr(torch.nn.functional, "scaled_dot_product_attention")
|
8 |
+
|
9 |
+
if is_torch2_available():
|
10 |
+
from .attention_processor import (
|
11 |
+
AttnProcessor2_0 as AttnProcessor,
|
12 |
+
)
|
13 |
+
from .attention_processor import (
|
14 |
+
CNAttnProcessor2_0 as CNAttnProcessor,
|
15 |
+
)
|
16 |
+
from .attention_processor import (
|
17 |
+
IPAttnProcessor2_0 as IPAttnProcessor,
|
18 |
+
)
|
19 |
+
from .attention_processor import (
|
20 |
+
TA_IPAttnProcessor2_0 as TA_IPAttnProcessor,
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor
|
24 |
+
|
25 |
+
|
26 |
+
class ImageProjModel(torch.nn.Module):
|
27 |
+
"""Projection Model"""
|
28 |
+
|
29 |
+
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4):
|
30 |
+
super().__init__()
|
31 |
+
|
32 |
+
self.cross_attention_dim = cross_attention_dim
|
33 |
+
self.clip_extra_context_tokens = clip_extra_context_tokens
|
34 |
+
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
35 |
+
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
36 |
+
|
37 |
+
def forward(self, image_embeds):
|
38 |
+
embeds = image_embeds
|
39 |
+
clip_extra_context_tokens = self.proj(embeds).reshape(
|
40 |
+
-1, self.clip_extra_context_tokens, self.cross_attention_dim
|
41 |
+
)
|
42 |
+
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
43 |
+
return clip_extra_context_tokens
|
44 |
+
|
45 |
+
|
46 |
+
class MLPProjModel(torch.nn.Module):
|
47 |
+
"""SD model with image prompt"""
|
48 |
+
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.proj = torch.nn.Sequential(
|
52 |
+
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
53 |
+
torch.nn.GELU(),
|
54 |
+
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
55 |
+
torch.nn.LayerNorm(cross_attention_dim)
|
56 |
+
)
|
57 |
+
|
58 |
+
def forward(self, image_embeds):
|
59 |
+
clip_extra_context_tokens = self.proj(image_embeds)
|
60 |
+
return clip_extra_context_tokens
|
61 |
+
|
62 |
+
|
63 |
+
class MultiIPAdapterImageProjection(torch.nn.Module):
|
64 |
+
def __init__(self, IPAdapterImageProjectionLayers):
|
65 |
+
super().__init__()
|
66 |
+
self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers)
|
67 |
+
|
68 |
+
def forward(self, image_embeds: List[torch.FloatTensor]):
|
69 |
+
projected_image_embeds = []
|
70 |
+
|
71 |
+
# currently, we accept `image_embeds` as
|
72 |
+
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
|
73 |
+
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
|
74 |
+
if not isinstance(image_embeds, list):
|
75 |
+
image_embeds = [image_embeds.unsqueeze(1)]
|
76 |
+
|
77 |
+
if len(image_embeds) != len(self.image_projection_layers):
|
78 |
+
raise ValueError(
|
79 |
+
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
|
80 |
+
)
|
81 |
+
|
82 |
+
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
|
83 |
+
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
|
84 |
+
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
|
85 |
+
image_embed = image_projection_layer(image_embed)
|
86 |
+
# image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
|
87 |
+
|
88 |
+
projected_image_embeds.append(image_embed)
|
89 |
+
|
90 |
+
return projected_image_embeds
|
91 |
+
|
92 |
+
|
93 |
+
class IPAdapter(torch.nn.Module):
|
94 |
+
"""IP-Adapter"""
|
95 |
+
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
|
96 |
+
super().__init__()
|
97 |
+
self.unet = unet
|
98 |
+
self.image_proj = image_proj_model
|
99 |
+
self.ip_adapter = adapter_modules
|
100 |
+
|
101 |
+
if ckpt_path is not None:
|
102 |
+
self.load_from_checkpoint(ckpt_path)
|
103 |
+
|
104 |
+
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
|
105 |
+
ip_tokens = self.image_proj(image_embeds)
|
106 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
|
107 |
+
# Predict the noise residual
|
108 |
+
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
109 |
+
return noise_pred
|
110 |
+
|
111 |
+
def load_from_checkpoint(self, ckpt_path: str):
|
112 |
+
# Calculate original checksums
|
113 |
+
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
|
114 |
+
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
|
115 |
+
|
116 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
117 |
+
keys = list(state_dict.keys())
|
118 |
+
if keys != ["image_proj", "ip_adapter"]:
|
119 |
+
state_dict = revise_state_dict(state_dict)
|
120 |
+
|
121 |
+
# Load state dict for image_proj_model and adapter_modules
|
122 |
+
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
|
123 |
+
self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True)
|
124 |
+
|
125 |
+
# Calculate new checksums
|
126 |
+
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
|
127 |
+
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
|
128 |
+
|
129 |
+
# Verify if the weights have changed
|
130 |
+
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
|
131 |
+
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!"
|
132 |
+
|
133 |
+
|
134 |
+
class IPAdapterPlus(torch.nn.Module):
|
135 |
+
"""IP-Adapter"""
|
136 |
+
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None):
|
137 |
+
super().__init__()
|
138 |
+
self.unet = unet
|
139 |
+
self.image_proj = image_proj_model
|
140 |
+
self.ip_adapter = adapter_modules
|
141 |
+
|
142 |
+
if ckpt_path is not None:
|
143 |
+
self.load_from_checkpoint(ckpt_path)
|
144 |
+
|
145 |
+
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds):
|
146 |
+
ip_tokens = self.image_proj(image_embeds)
|
147 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
|
148 |
+
# Predict the noise residual
|
149 |
+
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
150 |
+
return noise_pred
|
151 |
+
|
152 |
+
def load_from_checkpoint(self, ckpt_path: str):
|
153 |
+
# Calculate original checksums
|
154 |
+
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
|
155 |
+
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
|
156 |
+
org_unet_sum = []
|
157 |
+
for attn_name, attn_proc in self.unet.attn_processors.items():
|
158 |
+
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
|
159 |
+
org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
|
160 |
+
org_unet_sum = torch.sum(torch.stack(org_unet_sum))
|
161 |
+
|
162 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")
|
163 |
+
keys = list(state_dict.keys())
|
164 |
+
if keys != ["image_proj", "ip_adapter"]:
|
165 |
+
state_dict = revise_state_dict(state_dict)
|
166 |
+
|
167 |
+
# Check if 'latents' exists in both the saved state_dict and the current model's state_dict
|
168 |
+
strict_load_image_proj_model = True
|
169 |
+
if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict():
|
170 |
+
# Check if the shapes are mismatched
|
171 |
+
if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape:
|
172 |
+
print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.")
|
173 |
+
print("Removing 'latents' from checkpoint and loading the rest of the weights.")
|
174 |
+
del state_dict["image_proj"]["latents"]
|
175 |
+
strict_load_image_proj_model = False
|
176 |
+
|
177 |
+
# Load state dict for image_proj_model and adapter_modules
|
178 |
+
self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model)
|
179 |
+
missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False)
|
180 |
+
if len(missing_key) > 0:
|
181 |
+
for ms in missing_key:
|
182 |
+
if "ln" not in ms:
|
183 |
+
raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}")
|
184 |
+
if len(unexpected_key) > 0:
|
185 |
+
raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}")
|
186 |
+
|
187 |
+
# Calculate new checksums
|
188 |
+
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()]))
|
189 |
+
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()]))
|
190 |
+
|
191 |
+
# Verify if the weights loaded to unet
|
192 |
+
unet_sum = []
|
193 |
+
for attn_name, attn_proc in self.unet.attn_processors.items():
|
194 |
+
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)):
|
195 |
+
unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()])))
|
196 |
+
unet_sum = torch.sum(torch.stack(unet_sum))
|
197 |
+
|
198 |
+
assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!"
|
199 |
+
assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!"
|
200 |
+
|
201 |
+
# Verify if the weights have changed
|
202 |
+
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!"
|
203 |
+
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!"
|
204 |
+
|
205 |
+
|
206 |
+
class IPAdapterXL(IPAdapter):
|
207 |
+
"""SDXL"""
|
208 |
+
|
209 |
+
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
|
210 |
+
ip_tokens = self.image_proj(image_embeds)
|
211 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
|
212 |
+
# Predict the noise residual
|
213 |
+
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
|
214 |
+
return noise_pred
|
215 |
+
|
216 |
+
|
217 |
+
class IPAdapterPlusXL(IPAdapterPlus):
|
218 |
+
"""IP-Adapter with fine-grained features"""
|
219 |
+
|
220 |
+
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds):
|
221 |
+
ip_tokens = self.image_proj(image_embeds)
|
222 |
+
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1)
|
223 |
+
# Predict the noise residual
|
224 |
+
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample
|
225 |
+
return noise_pred
|
226 |
+
|
227 |
+
|
228 |
+
class IPAdapterFull(IPAdapterPlus):
|
229 |
+
"""IP-Adapter with full features"""
|
230 |
+
|
231 |
+
def init_proj(self):
|
232 |
+
image_proj_model = MLPProjModel(
|
233 |
+
cross_attention_dim=self.pipe.unet.config.cross_attention_dim,
|
234 |
+
clip_embeddings_dim=self.image_encoder.config.hidden_size,
|
235 |
+
).to(self.device, dtype=torch.float16)
|
236 |
+
return image_proj_model
|