Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import spaces | |
title = """# π€΅Welcome to SAK's CodBot π» (A Coding ChatBot) βββ""" | |
MARKDOWN = """ | |
CodingBot is an open-source coding language model that delivers excellent performance. | |
CodingBot leverages LlamaforCausalLM. | |
CodingBot supports 'java', 'javascript', 'c++', 'c#', 'c', 'html', 'java_server_pages', 'python', 'php', 'go', 'kotlin', 'swift', 'dart', 'shell', 'json', 'lua', 'matlab', 'yaml', 'css', 'rust', 'sql', 'ruby', 'tex', 'objective-c', 'powershell', 'ocaml', 'groovy', 'cmake', 'julia', 'perl', 'assembly', 'haskell', 'fortran', 'pascal', 'rmarkdown', 'scala', 'visual_basic', 'verilog', 'prolog', 'r', 'dockerfile','cobol', 'batchfile', 'toml', 'lisp', 'erlang', 'coffeescript', 'makefile', 'clojure', 'elixir' | |
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)** | |
""" | |
# Define the device and model path | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_path = "SunderAli17/CodingBot" | |
# Load the tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval() | |
def generate_code(system_prompt, user_prompt, max_length): | |
messages = [ | |
{"role": "system", "content": system_prompt}, | |
{"role": "user", "content": user_prompt} | |
] | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
max_new_tokens=max_length, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
theme = gr.themes.Soft( | |
font=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
js_func = """ | |
function refresh() { | |
const url = new URL(window.location); | |
if (url.searchParams.get('__theme') !== 'dark') { | |
url.searchParams.set('__theme', 'dark'); | |
window.location.href = url.href; | |
} | |
} | |
""" | |
with gr.Blocks(js = js_func, theme = theme) as SAK: | |
gr.Markdown(title) | |
gr.Markdown(MARKDOWN) | |
system_prompt_input = gr.Textbox( | |
label="π¨βπ» CodBot Instruction:", | |
value="Hello Sir! how are you today? I am here to generate clear and concise code examples for you.", | |
lines=2 | |
) | |
user_prompt_input = gr.Code( | |
label="β Coding Prompt π»", | |
value="Shopping website in HTML and Java", | |
language="python", | |
lines=2 | |
) | |
code_output = gr.Code(label="π¨βπ» CodBot", language='python', lines=50, interactive=True) | |
max_length_slider = gr.Slider(minimum=1, maximum=1800, value=650, label="Max Token Length") | |
generate_button = gr.Button("Generate Code") | |
generate_button.click( | |
generate_code, | |
inputs=[system_prompt_input, user_prompt_input, max_length_slider], | |
outputs=code_output | |
) | |
SAK.queue().launch(debug=True, share=True) |