Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,126 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
torch.cuda.max_memory_allocated(device=device)
|
11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
13 |
-
pipe = pipe.to(device)
|
14 |
-
else:
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
|
18 |
-
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
-
|
|
|
|
|
|
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
if randomize_seed:
|
24 |
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
examples = [
|
41 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
@@ -50,97 +135,233 @@ css="""
|
|
50 |
}
|
51 |
"""
|
52 |
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
|
55 |
-
else:
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
with gr.Column(elem_id="col-container"):
|
61 |
-
gr.Markdown(
|
62 |
-
|
63 |
-
Currently running on {power_device}.
|
64 |
-
""")
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
)
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
negative_prompt = gr.Text(
|
83 |
-
label="Negative prompt",
|
84 |
-
max_lines=1,
|
85 |
-
placeholder="Enter a negative prompt",
|
86 |
-
visible=False,
|
87 |
)
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
step=1,
|
94 |
-
value=
|
95 |
)
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
-
)
|
134 |
-
|
135 |
-
gr.Examples(
|
136 |
-
examples = examples,
|
137 |
-
inputs = [prompt]
|
138 |
-
)
|
139 |
|
140 |
-
|
141 |
-
fn =
|
142 |
-
inputs
|
143 |
-
outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
)
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from diffusers import AutoencoderKL, DiffusionPipeline
|
5 |
import torch
|
6 |
+
from __future__ import annotations
|
7 |
+
import os
|
8 |
+
import PIL.Image
|
9 |
+
import spaces
|
10 |
|
11 |
+
MARKDOWN = """
|
12 |
+
The demo is based on <a href="https://huggingface.co/dataautogpt3/OpenDalleV1.1">OpenDalle V1.1</a> by @dataautogpt3
|
13 |
+
The demo is based on the fusion of different models to provide better performance, comparatively.
|
14 |
|
15 |
+
You can try out the prompts and check for yourself.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
**Parts of codes are adopted from [@hysts's SD-XL demo](https://huggingface.co/spaces/hysts/SD-XL) running on A10G GPU **
|
|
|
18 |
|
19 |
+
You can check out more of my spaces. Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [Github](https://github.com/sander-ali)
|
20 |
+
"""
|
21 |
+
if not torch.cuda.is_available():
|
22 |
+
DESCRIPTION += "\n<h1>Running on CPU 🥶 This demo does not work on CPU. </h1>"
|
23 |
|
24 |
+
MAX_SEED = np.iinfo(np.int32).max
|
25 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
26 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1024"))
|
27 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
|
28 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
29 |
+
ENABLE_REFINER = os.getenv("ENABLE_REFINER", "0") == "1"
|
30 |
+
|
31 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
32 |
if randomize_seed:
|
33 |
seed = random.randint(0, MAX_SEED)
|
34 |
+
return seed
|
35 |
+
|
36 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
37 |
+
|
38 |
+
if torch.cuda.is_available():
|
39 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
40 |
+
pipe = DiffusionPipeline.from_pretrained("dataautogpt3/OpenDalleV1.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
41 |
+
pipe.enable_xformers_memory_efficient_attention()
|
42 |
+
if ENABLE_REFINER:
|
43 |
+
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
44 |
+
if ENABLE_CPU_OFFLOAD:
|
45 |
+
pipe.enable_model_cpu_offload()
|
46 |
+
if ENABLE_REFINER:
|
47 |
+
refiner.enable_model_cpu_offload()
|
48 |
+
else:
|
49 |
+
pipe.to(device)
|
50 |
+
if ENABLE_REFINER:
|
51 |
+
refiner.to(device)
|
52 |
+
if USE_TORCH_COMPILE:
|
53 |
+
pipe.unet = torch.compile(pipe.unet, mode='reduce-overhead', fullgraph=True)
|
54 |
+
if ENABLE_REFINER:
|
55 |
+
refiner.unet = torch.compile(refiner.unet, mode="reduce_overhead", fullgraph=True)
|
56 |
+
|
57 |
+
@spaces.GPU
|
58 |
+
@spaces.GPU
|
59 |
+
def infer(
|
60 |
+
prompt: str,
|
61 |
+
seed: int = 0,
|
62 |
+
width: int = 1024,
|
63 |
+
height: int = 1024,
|
64 |
+
guidance_scale_base: float = 5.0,
|
65 |
+
guidance_scale_refiner: float = 5.0,
|
66 |
+
num_inference_steps_base: int = 25,
|
67 |
+
num_inference_steps_refiner: int = 25,
|
68 |
+
apply_refiner: bool = False,
|
69 |
+
negative_prompt: str = "",
|
70 |
+
prompt_2: str = "",
|
71 |
+
negative_prompt_2: str = "",
|
72 |
+
use_negative_prompt: bool = False,
|
73 |
+
use_prompt_2: bool = False,
|
74 |
+
use_negative_prompt_2: bool = False,
|
75 |
+
progress=gr.Progress(track_tqdm=True),
|
76 |
+
) -> PIL.Image.Image:
|
77 |
+
print(f"** Generating image for: \"{prompt}\" **")
|
78 |
generator = torch.Generator().manual_seed(seed)
|
79 |
+
|
80 |
+
if not use_negative_prompt:
|
81 |
+
negative_prompt = None # type: ignore
|
82 |
+
if not use_prompt_2:
|
83 |
+
prompt_2 = None # type: ignore
|
84 |
+
if not use_negative_prompt_2:
|
85 |
+
negative_prompt_2 = None # type: ignore
|
86 |
+
|
87 |
+
if not apply_refiner:
|
88 |
+
return pipe(
|
89 |
+
prompt=prompt,
|
90 |
+
negative_prompt=negative_prompt,
|
91 |
+
prompt_2=prompt_2,
|
92 |
+
negative_prompt_2=negative_prompt_2,
|
93 |
+
width=width,
|
94 |
+
height=height,
|
95 |
+
guidance_scale=guidance_scale_base,
|
96 |
+
num_inference_steps=num_inference_steps_base,
|
97 |
+
generator=generator,
|
98 |
+
output_type="pil",
|
99 |
+
).images[0]
|
100 |
+
else:
|
101 |
+
latents = pipe(
|
102 |
+
prompt=prompt,
|
103 |
+
negative_prompt=negative_prompt,
|
104 |
+
prompt_2=prompt_2,
|
105 |
+
negative_prompt_2=negative_prompt_2,
|
106 |
+
width=width,
|
107 |
+
height=height,
|
108 |
+
guidance_scale=guidance_scale_base,
|
109 |
+
num_inference_steps=num_inference_steps_base,
|
110 |
+
generator=generator,
|
111 |
+
output_type="latent",
|
112 |
+
).images
|
113 |
+
image = refiner(
|
114 |
+
prompt=prompt,
|
115 |
+
negative_prompt=negative_prompt,
|
116 |
+
prompt_2=prompt_2,
|
117 |
+
negative_prompt_2=negative_prompt_2,
|
118 |
+
guidance_scale=guidance_scale_refiner,
|
119 |
+
num_inference_steps=num_inference_steps_refiner,
|
120 |
+
image=latents,
|
121 |
+
generator=generator,
|
122 |
+
).images[0]
|
123 |
+
return image
|
124 |
|
125 |
examples = [
|
126 |
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
|
|
135 |
}
|
136 |
"""
|
137 |
|
138 |
+
# if torch.cuda.is_available():
|
139 |
+
# power_device = "GPU"
|
140 |
+
# else:
|
141 |
+
# power_device = "CPU"
|
142 |
+
theme = gr.themes.Glass(
|
143 |
+
primary_hue="blue",
|
144 |
+
secondary_hue="blue",
|
145 |
+
neutral_hue="gray",
|
146 |
+
text_size="md",
|
147 |
+
spacing_size="md",
|
148 |
+
radius_size="md",
|
149 |
+
font=[gr.themes.GoogleFont('Source Sans Pro'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
150 |
+
).set(
|
151 |
+
body_background_fill_dark='*background_fill_primary',
|
152 |
+
background_fill_primary_dark='*neutral_950',
|
153 |
+
background_fill_secondary='*neutral_50',
|
154 |
+
background_fill_secondary_dark='*neutral_900',
|
155 |
+
border_color_primary_dark='*neutral_700',
|
156 |
+
block_background_fill='*background_fill_primary',
|
157 |
+
block_background_fill_dark='*neutral_800',
|
158 |
+
block_border_width='1px',
|
159 |
+
block_label_background_fill='*background_fill_primary',
|
160 |
+
block_label_background_fill_dark='*background_fill_secondary',
|
161 |
+
block_label_text_color='*neutral_500',
|
162 |
+
block_label_text_size='*text_sm',
|
163 |
+
block_label_text_weight='400',
|
164 |
+
block_shadow='none',
|
165 |
+
block_shadow_dark='none',
|
166 |
+
block_title_text_color='*neutral_500',
|
167 |
+
block_title_text_weight='400',
|
168 |
+
panel_border_width='0',
|
169 |
+
panel_border_width_dark='0',
|
170 |
+
checkbox_background_color_dark='*neutral_800',
|
171 |
+
checkbox_border_width='*input_border_width',
|
172 |
+
checkbox_label_border_width='*input_border_width',
|
173 |
+
input_background_fill='*neutral_100',
|
174 |
+
input_background_fill_dark='*neutral_700',
|
175 |
+
input_border_color_focus_dark='*neutral_700',
|
176 |
+
input_border_width='0px',
|
177 |
+
input_border_width_dark='0px',
|
178 |
+
slider_color='#2563eb',
|
179 |
+
slider_color_dark='#2563eb',
|
180 |
+
table_even_background_fill_dark='*neutral_950',
|
181 |
+
table_odd_background_fill_dark='*neutral_900',
|
182 |
+
button_border_width='*input_border_width',
|
183 |
+
button_shadow_active='none',
|
184 |
+
button_primary_background_fill='*primary_200',
|
185 |
+
button_primary_background_fill_dark='*primary_700',
|
186 |
+
button_primary_background_fill_hover='*button_primary_background_fill',
|
187 |
+
button_primary_background_fill_hover_dark='*button_primary_background_fill',
|
188 |
+
button_secondary_background_fill='*neutral_200',
|
189 |
+
button_secondary_background_fill_dark='*neutral_600',
|
190 |
+
button_secondary_background_fill_hover='*button_secondary_background_fill',
|
191 |
+
button_secondary_background_fill_hover_dark='*button_secondary_background_fill',
|
192 |
+
button_cancel_background_fill='*button_secondary_background_fill',
|
193 |
+
button_cancel_background_fill_dark='*button_secondary_background_fill',
|
194 |
+
button_cancel_background_fill_hover='*button_cancel_background_fill',
|
195 |
+
button_cancel_background_fill_hover_dark='*button_cancel_background_fill'
|
196 |
+
)
|
197 |
|
198 |
+
|
199 |
+
with gr.Blocks(css="footer{display:none !important}", theme=theme) as demo:
|
200 |
|
201 |
with gr.Column(elem_id="col-container"):
|
202 |
+
gr.Markdown(MARKDOWN)
|
203 |
+
gr.DuplicateButton()
|
|
|
|
|
204 |
|
205 |
+
with gr.Group():
|
206 |
+
prompt = gr.Text(
|
207 |
+
label="Prompt",
|
208 |
+
show_label=False,
|
209 |
+
max_lines=1,
|
210 |
+
container=False,
|
211 |
+
placeholder="Enter your prompt",
|
212 |
+
)
|
213 |
+
run_button = gr.Button("Generate")
|
214 |
+
result = gr.Image(label="Result", show_label=False)
|
215 |
+
with gr.Accordion("Advanced options", open=False):
|
216 |
with gr.Row():
|
217 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
|
218 |
+
use_prompt_2 = gr.Checkbox(label="Use prompt 2", value=False)
|
219 |
+
use_negative_prompt_2 = gr.Checkbox(label="Use negative prompt 2", value=False)
|
220 |
+
negative_prompt = gr.Text(
|
221 |
+
label="Negative prompt",
|
222 |
+
max_lines=1,
|
223 |
+
placeholder="Enter a negative prompt",
|
224 |
+
visible=False,
|
225 |
+
)
|
226 |
+
prompt_2 = gr.Text(
|
227 |
+
label="Prompt 2",
|
228 |
+
max_lines=1,
|
229 |
+
placeholder="Enter your prompt",
|
230 |
+
visible=False,
|
231 |
+
)
|
232 |
+
negative_prompt_2 = gr.Text(
|
233 |
+
label="Negative prompt 2",
|
234 |
+
max_lines=1,
|
235 |
+
placeholder="Enter a negative prompt",
|
236 |
+
visible=False,
|
237 |
+
)
|
238 |
+
|
239 |
+
seed = gr.Slider(
|
240 |
+
label="Seed",
|
241 |
+
minimum=0,
|
242 |
+
maximum=MAX_SEED,
|
243 |
+
step=1,
|
244 |
+
value=0,
|
245 |
+
)
|
246 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
247 |
+
with gr.Row():
|
248 |
+
width = gr.Slider(
|
249 |
+
label="Width",
|
250 |
+
minimum=256,
|
251 |
+
maximum=MAX_IMAGE_SIZE,
|
252 |
+
step=32,
|
253 |
+
value=1024,
|
254 |
)
|
255 |
+
height = gr.Slider(
|
256 |
+
label="Height",
|
257 |
+
minimum=256,
|
258 |
+
maximum=MAX_IMAGE_SIZE,
|
259 |
+
step=32,
|
260 |
+
value=1024,
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
)
|
262 |
+
apply_refiner = gr.Checkbox(label="Apply refiner", value=False, visible=ENABLE_REFINER)
|
263 |
+
with gr.Row():
|
264 |
+
guidance_scale_base = gr.Slider(
|
265 |
+
label="Guidance scale for base",
|
266 |
+
minimum=1,
|
267 |
+
maximum=20,
|
268 |
+
step=0.1,
|
269 |
+
value=5.0,
|
270 |
+
)
|
271 |
+
num_inference_steps_base = gr.Slider(
|
272 |
+
label="Number of inference steps for base",
|
273 |
+
minimum=10,
|
274 |
+
maximum=100,
|
275 |
step=1,
|
276 |
+
value=25,
|
277 |
)
|
278 |
+
with gr.Row(visible=False) as refiner_params:
|
279 |
+
guidance_scale_refiner = gr.Slider(
|
280 |
+
label="Guidance scale for refiner",
|
281 |
+
minimum=1,
|
282 |
+
maximum=20,
|
283 |
+
step=0.1,
|
284 |
+
value=5.0,
|
285 |
+
)
|
286 |
+
num_inference_steps_refiner = gr.Slider(
|
287 |
+
label="Number of inference steps for refiner",
|
288 |
+
minimum=10,
|
289 |
+
maximum=100,
|
290 |
+
step=1,
|
291 |
+
value=25,
|
292 |
+
)
|
293 |
+
|
294 |
+
gr.Examples(
|
295 |
+
examples=examples,
|
296 |
+
inputs=prompt,
|
297 |
+
outputs=result,
|
298 |
+
fn=infer,
|
299 |
+
cache_examples=CACHE_EXAMPLES,
|
300 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
+
use_negative_prompt.change(
|
303 |
+
fn=lambda x: gr.update(visible=x),
|
304 |
+
inputs=use_negative_prompt,
|
305 |
+
outputs=negative_prompt,
|
306 |
+
queue=False,
|
307 |
+
api_name=False,
|
308 |
+
)
|
309 |
+
use_prompt_2.change(
|
310 |
+
fn=lambda x: gr.update(visible=x),
|
311 |
+
inputs=use_prompt_2,
|
312 |
+
outputs=prompt_2,
|
313 |
+
queue=False,
|
314 |
+
api_name=False,
|
315 |
+
)
|
316 |
+
use_negative_prompt_2.change(
|
317 |
+
fn=lambda x: gr.update(visible=x),
|
318 |
+
inputs=use_negative_prompt_2,
|
319 |
+
outputs=negative_prompt_2,
|
320 |
+
queue=False,
|
321 |
+
api_name=False,
|
322 |
+
)
|
323 |
+
apply_refiner.change(
|
324 |
+
fn=lambda x: gr.update(visible=x),
|
325 |
+
inputs=apply_refiner,
|
326 |
+
outputs=refiner_params,
|
327 |
+
queue=False,
|
328 |
+
api_name=False,
|
329 |
)
|
330 |
|
331 |
+
gr.on(
|
332 |
+
triggers=[
|
333 |
+
prompt.submit,
|
334 |
+
negative_prompt.submit,
|
335 |
+
prompt_2.submit,
|
336 |
+
negative_prompt_2.submit,
|
337 |
+
run_button.click,
|
338 |
+
],
|
339 |
+
fn=randomize_seed_fn,
|
340 |
+
inputs=[seed, randomize_seed],
|
341 |
+
outputs=seed,
|
342 |
+
queue=False,
|
343 |
+
api_name=False,
|
344 |
+
).then(
|
345 |
+
fn=infer,
|
346 |
+
inputs=[
|
347 |
+
prompt,
|
348 |
+
negative_prompt,
|
349 |
+
prompt_2,
|
350 |
+
negative_prompt_2,
|
351 |
+
use_negative_prompt,
|
352 |
+
use_prompt_2,
|
353 |
+
use_negative_prompt_2,
|
354 |
+
seed,
|
355 |
+
width,
|
356 |
+
height,
|
357 |
+
guidance_scale_base,
|
358 |
+
guidance_scale_refiner,
|
359 |
+
num_inference_steps_base,
|
360 |
+
num_inference_steps_refiner,
|
361 |
+
apply_refiner,
|
362 |
+
],
|
363 |
+
outputs=result,
|
364 |
+
api_name="run",
|
365 |
+
)
|
366 |
+
if __name__ == "__main__":
|
367 |
+
demo.queue(max_size=20, api_open=False).launch(show_api=False)
|