Spaces:
Runtime error
Runtime error
File size: 5,661 Bytes
ad40e72 83436b6 ad40e72 0bc03e1 ad40e72 0388786 ad40e72 dfd8177 35dae8f dfd8177 ad40e72 01e9056 ad40e72 01e9056 ad40e72 26d7ce5 c377671 3c35e3b ad40e72 695545c ad40e72 695545c ad40e72 7010e96 d9dd1aa ad40e72 7a35f23 83436b6 ad40e72 d9dd1aa 695545c dfd8177 695545c ad40e72 7a35f23 dfd8177 695545c ad40e72 83436b6 ad40e72 695545c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
import spaces
MARKDOWN = """
This demo utilizes <a href="https://huggingface.co/meta-llama">LLaMA 3 8B Instructor Model</a> by Meta LLaMA.
Furthermore, the feature extraction is performed using <a href="https://huggingface.co/BAAI/bge-large-zh-v1.5"> BGE Model Series </a> by BAAI.
I am looking for more specific data to refine the responses of the chatbot, so if any specialist wants to collaborate, you are welcome to do so. My details are provided below.
**Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)**
**The Savior Bot is here to assist you with any questions you have about Heart Disease Preventions. How can the Savior Bot help you?"**
"""
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-large-zh-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
#@spaces.GPU
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Savior Bot. Your goal is to provide accurate, preventions, and helpful answers to user queries based on the available data. Always ensure your responses are clear and concise.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, SAK solutions are trying to improve my knowledge further, however, as per my current knowledge I am unable to answer this question. Is there anything else I can help you with?"
# Remove sensitive information and unwanted sections from the response
sensitive_keywords = [PERSIST_DIR, PDF_DIRECTORY, "/", "\\", ".pdf", ".doc", ".txt"]
for keyword in sensitive_keywords:
response = response.replace(keyword, "")
# Remove sections starting with specific keywords
unwanted_sections = ["Page Label","Page Label:","page_label","page_label:","file_path:","file_path",]
for section in unwanted_sections:
if section in response:
response = response.split(section)[0]
# Additional cleanup for any remaining artifacts from replacements
response = ' '.join(response.split())
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
show_label=False,
placeholder="Savior Bot is at your service ... Let me know what you are feeling"
)
output_component = gr.Textbox()
# Function to handle queries
def chatbot_handler(query):
response = handle_query(query)
return response
theme = gr.themes.Soft(
font=[gr.themes.GoogleFont('Bree Serif'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'dark') {
url.searchParams.set('__theme', 'dark');
window.location.href = url.href;
}
}
"""
# Create the Gradio interface
interface = gr.Interface(
fn=chatbot_handler,
inputs=input_component,
outputs=output_component,
title="Welcome to SAK solutions",
description=MARKDOWN,
theme = theme,
js = js_func
)
# Launch the Gradio interface
interface.launch(share=True) |