SunderAli17's picture
Update app.py
c2e4255 verified
raw
history blame
4.52 kB
import os
from dotenv import load_dotenv
import gradio as gr
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings
from llama_index.llms.huggingface import HuggingFaceInferenceAPI
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from sentence_transformers import SentenceTransformer
import spaces
load_dotenv()
# Configure the Llama index settings
Settings.llm = HuggingFaceInferenceAPI(
model_name="meta-llama/Meta-Llama-3.1-8B-Instruct",
tokenizer_name="meta-llama/Meta-Llama-3.1-8B-Instruct",
context_window=3000,
token=os.getenv("HF_TOKEN"),
max_new_tokens=512,
generate_kwargs={"temperature": 0.1},
)
Settings.embed_model = HuggingFaceEmbedding(
model_name="BAAI/bge-small-en-v1.5"
)
# Define the directory for persistent storage and data
PERSIST_DIR = "db"
PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs
# Ensure directories exist
os.makedirs(PDF_DIRECTORY, exist_ok=True)
os.makedirs(PERSIST_DIR, exist_ok=True)
# Variable to store current chat conversation
current_chat_history = []
@spaces.GPU
def data_ingestion_from_directory():
# Use SimpleDirectoryReader on the directory containing the PDF files
documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data()
storage_context = StorageContext.from_defaults()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir=PERSIST_DIR)
def handle_query(query):
chat_text_qa_msgs = [
(
"user",
"""
You are the Heart Disease Solutions chatbot. Your goal is to provide accurate, preventions, and helpful answers to user queries based on the heart data. Always ensure your responses are clear and concise.
Context:
{context_str}
Question:
{query_str}
"""
)
]
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs)
# Load index from storage
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
index = load_index_from_storage(storage_context)
# Use chat history to enhance response
context_str = ""
for past_query, response in reversed(current_chat_history):
if past_query.strip():
context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n"
query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str)
answer = query_engine.query(query)
if hasattr(answer, 'response'):
response = answer.response
elif isinstance(answer, dict) and 'response' in answer:
response = answer['response']
else:
response = "Sorry, as per my current knowledge I am unable to answer this question. Is there anything else I can help you with?"
# Remove sensitive information and unwanted sections from the response
sensitive_keywords = [PERSIST_DIR, PDF_DIRECTORY, "/", "\\", ".pdf", ".doc", ".txt"]
for keyword in sensitive_keywords:
response = response.replace(keyword, "")
# Remove sections starting with specific keywords
unwanted_sections = ["Page Label","Page Label:","page_label","page_label:","file_path:","file_path",]
for section in unwanted_sections:
if section in response:
response = response.split(section)[0]
# Additional cleanup for any remaining artifacts from replacements
response = ' '.join(response.split())
# Update current chat history
current_chat_history.append((query, response))
return response
# Example usage: Process PDF ingestion from directory
print("Processing PDF ingestion from directory:", PDF_DIRECTORY)
data_ingestion_from_directory()
# Define the input and output components for the Gradio interface
input_component = gr.Textbox(
show_label=False,
placeholder="Savior Bot is at your service ... Let me know what you are feeling"
)
output_component = gr.Textbox()
# Function to handle queries
def chatbot_handler(query):
response = handle_query(query)
return response
# Create the Gradio interface
interface = gr.Interface(
fn=chatbot_handler,
inputs=input_component,
outputs=output_component,
title="Welcome to SAK solutions",
description="I am here to assist you with any questions you have about Heart Disease Preventions. How can the Savior Bot help you?"
)
# Launch the Gradio interface
interface.launch()