import os from dotenv import load_dotenv import gradio as gr from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate, Settings from llama_index_llms.huggingface_api import HuggingFaceInferenceAPI #from llama_index.llms.huggingface import HuggingFaceInferenceAPI from llama_index.embeddings.huggingface import HuggingFaceEmbedding from sentence_transformers import SentenceTransformer import spaces MARKDOWN = """ This demo utilizes LLaMA 3 8B Instructor Model by Meta LLaMA. Furthermore, the feature extraction is performed using BGE Model Series by BAAI. I am looking for more specific data to refine the responses of the chatbot, so if any specialist wants to collaborate, you are welcome to do so. My details are provided below. Current the chatbot is fine-tuned on limited data available from American Heart Association, Irish Heart, NHS, and other health bodies. **Demo by [Sunder Ali Khowaja](https://sander-ali.github.io) - [X](https://x.com/SunderAKhowaja) -[Github](https://github.com/sander-ali) -[Hugging Face](https://huggingface.co/SunderAli17)** **The Savior Bot is here to assist you with any questions you have about Heart Disease Preventions. How can the Savior Bot help you?"** """ load_dotenv() # Configure the Llama index settings Settings.llm = HuggingFaceInferenceAPI( model_name="meta-llama/Meta-Llama-3-8B-Instruct", tokenizer_name="meta-llama/Meta-Llama-3-8B-Instruct", context_window=3000, token=os.getenv("HF_TOKEN"), max_new_tokens=512, generate_kwargs={"temperature": 0.1}, ) Settings.embed_model = HuggingFaceEmbedding( model_name="BAAI/bge-large-zh-v1.5" ) # Define the directory for persistent storage and data PERSIST_DIR = "db" PDF_DIRECTORY = 'data' # Changed to the directory containing PDFs # Ensure directories exist os.makedirs(PDF_DIRECTORY, exist_ok=True) os.makedirs(PERSIST_DIR, exist_ok=True) # Variable to store current chat conversation current_chat_history = [] #@spaces.GPU def data_ingestion_from_directory(): # Use SimpleDirectoryReader on the directory containing the PDF files documents = SimpleDirectoryReader(PDF_DIRECTORY).load_data() storage_context = StorageContext.from_defaults() index = VectorStoreIndex.from_documents(documents) index.storage_context.persist(persist_dir=PERSIST_DIR) def handle_query(query): chat_text_qa_msgs = [ ( "user", """ You are the Savior Bot. Your goal is to provide accurate, preventions, and helpful answers to user queries based on the available data. Always ensure your responses are clear and concise. Context: {context_str} Question: {query_str} """ ) ] text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) # Load index from storage storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) index = load_index_from_storage(storage_context) # Use chat history to enhance response context_str = "" for past_query, response in reversed(current_chat_history): if past_query.strip(): context_str += f"User asked: '{past_query}'\nBot answered: '{response}'\n" query_engine = index.as_query_engine(text_qa_template=text_qa_template, context_str=context_str) answer = query_engine.query(query) if hasattr(answer, 'response'): response = answer.response elif isinstance(answer, dict) and 'response' in answer: response = answer['response'] else: response = "Sorry, SAK solutions are trying to improve my knowledge further, however, as per my current knowledge I am unable to answer this question. Is there anything else I can help you with?" # Remove sensitive information and unwanted sections from the response sensitive_keywords = [PERSIST_DIR, PDF_DIRECTORY, "/", "\\", ".pdf", ".doc", ".txt"] for keyword in sensitive_keywords: response = response.replace(keyword, "") # Remove sections starting with specific keywords unwanted_sections = ["Page Label","Page Label:","page_label","page_label:","file_path:","file_path",] for section in unwanted_sections: if section in response: response = response.split(section)[0] # Additional cleanup for any remaining artifacts from replacements response = ' '.join(response.split()) # Update current chat history current_chat_history.append((query, response)) return response # Example usage: Process PDF ingestion from directory print("Processing PDF ingestion from directory:", PDF_DIRECTORY) data_ingestion_from_directory() # Define the input and output components for the Gradio interface input_component = gr.Textbox( show_label=False, placeholder="Savior Bot is at your service ... Let me know what you are feeling" ) output_component = gr.Textbox() # Function to handle queries def chatbot_handler(query): response = handle_query(query) return response theme = gr.themes.Soft( font=[gr.themes.GoogleFont('Bree Serif'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], ) js_func = """ function refresh() { const url = new URL(window.location); if (url.searchParams.get('__theme') !== 'dark') { url.searchParams.set('__theme', 'dark'); window.location.href = url.href; } } """ # Create the Gradio interface interface = gr.Interface( fn=chatbot_handler, inputs=input_component, outputs=output_component, title="Welcome to SAK solutions", description=MARKDOWN, theme = theme, js = js_func ) # Launch the Gradio interface interface.launch(share=True)