Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
import cv2
|
5 |
+
import insightface
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import os
|
9 |
+
from huggingface_hub import snapshot_download
|
10 |
+
from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
|
11 |
+
from SAK.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
|
12 |
+
from SAK.models.modeling_chatglm import ChatGLMModel
|
13 |
+
from SAK.models.tokenization_chatglm import ChatGLMTokenizer
|
14 |
+
from diffusers import AutoencoderKL
|
15 |
+
from SAK.models.unet_2d_condition import UNet2DConditionModel
|
16 |
+
from diffusers import EulerDiscreteScheduler
|
17 |
+
from PIL import Image
|
18 |
+
from insightface.app import FaceAnalysis
|
19 |
+
from insightface.data import get_image as ins_get_image
|
20 |
+
|
21 |
+
|
22 |
+
device = "cuda"
|
23 |
+
# ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
|
24 |
+
# ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus")
|
25 |
+
|
26 |
+
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
|
27 |
+
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
|
28 |
+
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
|
29 |
+
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
|
30 |
+
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
|
31 |
+
clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
|
32 |
+
clip_image_encoder.to(device)
|
33 |
+
clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
|
34 |
+
|
35 |
+
pipe = StableDiffusionXLPipeline(
|
36 |
+
vae = vae,
|
37 |
+
text_encoder = text_encoder,
|
38 |
+
tokenizer = tokenizer,
|
39 |
+
unet = unet,
|
40 |
+
scheduler = scheduler,
|
41 |
+
face_clip_encoder = clip_image_encoder,
|
42 |
+
face_clip_processor = clip_image_processor,
|
43 |
+
force_zeros_for_empty_prompt = False,
|
44 |
+
)
|
45 |
+
|
46 |
+
class FaceInfoGenerator():
|
47 |
+
def __init__(self, root_dir = "./.insightface/"):
|
48 |
+
self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
49 |
+
self.app.prepare(ctx_id = 0, det_size = (640, 640))
|
50 |
+
|
51 |
+
def get_faceinfo_one_img(self, face_image):
|
52 |
+
face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
53 |
+
|
54 |
+
if len(face_info) == 0:
|
55 |
+
face_info = None
|
56 |
+
else:
|
57 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
|
58 |
+
return face_info
|
59 |
+
|
60 |
+
def face_bbox_to_square(bbox):
|
61 |
+
## l, t, r, b to square l, t, r, b
|
62 |
+
l,t,r,b = bbox
|
63 |
+
cent_x = (l + r) / 2
|
64 |
+
cent_y = (t + b) / 2
|
65 |
+
w, h = r - l, b - t
|
66 |
+
r = max(w, h) / 2
|
67 |
+
|
68 |
+
l0 = cent_x - r
|
69 |
+
r0 = cent_x + r
|
70 |
+
t0 = cent_y - r
|
71 |
+
b0 = cent_y + r
|
72 |
+
|
73 |
+
return [l0, t0, r0, b0]
|
74 |
+
|
75 |
+
MAX_SEED = np.iinfo(np.int32).max
|
76 |
+
MAX_IMAGE_SIZE = 1024
|
77 |
+
face_info_generator = FaceInfoGenerator()
|
78 |
+
|
79 |
+
@spaces.GPU
|
80 |
+
def infer(prompt,
|
81 |
+
image = None,
|
82 |
+
negative_prompt = "nsfw,Face shadows,Low resolution,JPEG artifacts、Vague、bad,Neon lights",
|
83 |
+
seed = 66,
|
84 |
+
randomize_seed = False,
|
85 |
+
guidance_scale = 5.0,
|
86 |
+
num_inference_steps = 50
|
87 |
+
):
|
88 |
+
if randomize_seed:
|
89 |
+
seed = random.randint(0, MAX_SEED)
|
90 |
+
generator = torch.Generator().manual_seed(seed)
|
91 |
+
global pipe
|
92 |
+
pipe = pipe.to(device)
|
93 |
+
pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
|
94 |
+
scale = 0.8
|
95 |
+
pipe.set_face_fidelity_scale(scale)
|
96 |
+
|
97 |
+
face_info = face_info_generator.get_faceinfo_one_img(image)
|
98 |
+
face_bbox_square = face_bbox_to_square(face_info["bbox"])
|
99 |
+
crop_image = image.crop(face_bbox_square)
|
100 |
+
crop_image = crop_image.resize((336, 336))
|
101 |
+
crop_image = [crop_image]
|
102 |
+
face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
|
103 |
+
face_embeds = face_embeds.to(device, dtype = torch.float16)
|
104 |
+
|
105 |
+
image = pipe(
|
106 |
+
prompt = prompt,
|
107 |
+
negative_prompt = negative_prompt,
|
108 |
+
height = 1024,
|
109 |
+
width = 1024,
|
110 |
+
num_inference_steps= num_inference_steps,
|
111 |
+
guidance_scale = guidance_scale,
|
112 |
+
num_images_per_prompt = 1,
|
113 |
+
generator = generator,
|
114 |
+
face_crop_image = crop_image,
|
115 |
+
face_insightface_embeds = face_embeds
|
116 |
+
).images[0]
|
117 |
+
|
118 |
+
return image, seed
|
119 |
+
|
120 |
+
|
121 |
+
examples = [
|
122 |
+
["wearing a full suit sitting in a restaurant with candle lights ", "image/image1.png"],
|
123 |
+
["Cowboy, cowboy hat, Wild Cowboy, background is a western town, cactus, sunset, warm colors, shot with XT4 film, noise, vignette, Kodak film, vintage", "image/image2.png"]
|
124 |
+
]
|
125 |
+
|
126 |
+
|
127 |
+
css="""
|
128 |
+
#col-left {
|
129 |
+
margin: 0 auto;
|
130 |
+
max-width: 600px;
|
131 |
+
}
|
132 |
+
#col-right {
|
133 |
+
margin: 0 auto;
|
134 |
+
max-width: 750px;
|
135 |
+
}
|
136 |
+
#button {
|
137 |
+
color: blue;
|
138 |
+
}
|
139 |
+
"""
|
140 |
+
|
141 |
+
def load_description(fp):
|
142 |
+
with open(fp, 'r', encoding='utf-8') as f:
|
143 |
+
content = f.read()
|
144 |
+
return content
|
145 |
+
|
146 |
+
with gr.Blocks(css=css) as Kolors:
|
147 |
+
gr.HTML(load_description("assets/title.md"))
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column(elem_id="col-left"):
|
150 |
+
with gr.Row():
|
151 |
+
prompt = gr.Textbox(
|
152 |
+
label="Prompt",
|
153 |
+
placeholder="Enter your prompt",
|
154 |
+
lines=2
|
155 |
+
)
|
156 |
+
with gr.Row():
|
157 |
+
image = gr.Image(label="Image", type="pil")
|
158 |
+
with gr.Accordion("Advanced Settings", open=False):
|
159 |
+
negative_prompt = gr.Textbox(
|
160 |
+
label="Negative prompt",
|
161 |
+
placeholder="Enter a negative prompt",
|
162 |
+
visible=True,
|
163 |
+
)
|
164 |
+
seed = gr.Slider(
|
165 |
+
label="Seed",
|
166 |
+
minimum=0,
|
167 |
+
maximum=MAX_SEED,
|
168 |
+
step=1,
|
169 |
+
value=0,
|
170 |
+
)
|
171 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
172 |
+
with gr.Row():
|
173 |
+
guidance_scale = gr.Slider(
|
174 |
+
label="Guidance scale",
|
175 |
+
minimum=0.0,
|
176 |
+
maximum=10.0,
|
177 |
+
step=0.1,
|
178 |
+
value=5.0,
|
179 |
+
)
|
180 |
+
num_inference_steps = gr.Slider(
|
181 |
+
label="Number of inference steps",
|
182 |
+
minimum=10,
|
183 |
+
maximum=50,
|
184 |
+
step=1,
|
185 |
+
value=25,
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
button = gr.Button("Run", elem_id="button")
|
189 |
+
|
190 |
+
with gr.Column(elem_id="col-right"):
|
191 |
+
result = gr.Image(label="Result", show_label=False)
|
192 |
+
seed_used = gr.Number(label="Seed Used")
|
193 |
+
|
194 |
+
with gr.Row():
|
195 |
+
gr.Examples(
|
196 |
+
fn = infer,
|
197 |
+
examples = examples,
|
198 |
+
inputs = [prompt, image],
|
199 |
+
outputs = [result, seed_used],
|
200 |
+
)
|
201 |
+
|
202 |
+
button.click(
|
203 |
+
fn = infer,
|
204 |
+
inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
|
205 |
+
outputs = [result, seed_used]
|
206 |
+
)
|
207 |
+
|
208 |
+
|
209 |
+
SAK.queue().launch(debug=True)
|