SunderAli17 commited on
Commit
34431b1
·
verified ·
1 Parent(s): ebfac98

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +209 -0
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import random
3
+ import torch
4
+ import cv2
5
+ import insightface
6
+ import gradio as gr
7
+ import numpy as np
8
+ import os
9
+ from huggingface_hub import snapshot_download
10
+ from transformers import CLIPVisionModelWithProjection,CLIPImageProcessor
11
+ from SAK.pipelines.pipeline_stable_diffusion_xl_chatglm_256_ipadapter_FaceID import StableDiffusionXLPipeline
12
+ from SAK.models.modeling_chatglm import ChatGLMModel
13
+ from SAK.models.tokenization_chatglm import ChatGLMTokenizer
14
+ from diffusers import AutoencoderKL
15
+ from SAK.models.unet_2d_condition import UNet2DConditionModel
16
+ from diffusers import EulerDiscreteScheduler
17
+ from PIL import Image
18
+ from insightface.app import FaceAnalysis
19
+ from insightface.data import get_image as ins_get_image
20
+
21
+
22
+ device = "cuda"
23
+ # ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
24
+ # ckpt_dir_faceid = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-FaceID-Plus")
25
+
26
+ text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
27
+ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
28
+ vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
29
+ scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
30
+ unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
31
+ clip_image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_faceid}/clip-vit-large-patch14-336', ignore_mismatched_sizes=True)
32
+ clip_image_encoder.to(device)
33
+ clip_image_processor = CLIPImageProcessor(size = 336, crop_size = 336)
34
+
35
+ pipe = StableDiffusionXLPipeline(
36
+ vae = vae,
37
+ text_encoder = text_encoder,
38
+ tokenizer = tokenizer,
39
+ unet = unet,
40
+ scheduler = scheduler,
41
+ face_clip_encoder = clip_image_encoder,
42
+ face_clip_processor = clip_image_processor,
43
+ force_zeros_for_empty_prompt = False,
44
+ )
45
+
46
+ class FaceInfoGenerator():
47
+ def __init__(self, root_dir = "./.insightface/"):
48
+ self.app = FaceAnalysis(name = 'antelopev2', root = root_dir, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
49
+ self.app.prepare(ctx_id = 0, det_size = (640, 640))
50
+
51
+ def get_faceinfo_one_img(self, face_image):
52
+ face_info = self.app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
53
+
54
+ if len(face_info) == 0:
55
+ face_info = None
56
+ else:
57
+ face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
58
+ return face_info
59
+
60
+ def face_bbox_to_square(bbox):
61
+ ## l, t, r, b to square l, t, r, b
62
+ l,t,r,b = bbox
63
+ cent_x = (l + r) / 2
64
+ cent_y = (t + b) / 2
65
+ w, h = r - l, b - t
66
+ r = max(w, h) / 2
67
+
68
+ l0 = cent_x - r
69
+ r0 = cent_x + r
70
+ t0 = cent_y - r
71
+ b0 = cent_y + r
72
+
73
+ return [l0, t0, r0, b0]
74
+
75
+ MAX_SEED = np.iinfo(np.int32).max
76
+ MAX_IMAGE_SIZE = 1024
77
+ face_info_generator = FaceInfoGenerator()
78
+
79
+ @spaces.GPU
80
+ def infer(prompt,
81
+ image = None,
82
+ negative_prompt = "nsfw,Face shadows,Low resolution,JPEG artifacts、Vague、bad,Neon lights",
83
+ seed = 66,
84
+ randomize_seed = False,
85
+ guidance_scale = 5.0,
86
+ num_inference_steps = 50
87
+ ):
88
+ if randomize_seed:
89
+ seed = random.randint(0, MAX_SEED)
90
+ generator = torch.Generator().manual_seed(seed)
91
+ global pipe
92
+ pipe = pipe.to(device)
93
+ pipe.load_ip_adapter_faceid_plus(f'{ckpt_dir_faceid}/ipa-faceid-plus.bin', device = device)
94
+ scale = 0.8
95
+ pipe.set_face_fidelity_scale(scale)
96
+
97
+ face_info = face_info_generator.get_faceinfo_one_img(image)
98
+ face_bbox_square = face_bbox_to_square(face_info["bbox"])
99
+ crop_image = image.crop(face_bbox_square)
100
+ crop_image = crop_image.resize((336, 336))
101
+ crop_image = [crop_image]
102
+ face_embeds = torch.from_numpy(np.array([face_info["embedding"]]))
103
+ face_embeds = face_embeds.to(device, dtype = torch.float16)
104
+
105
+ image = pipe(
106
+ prompt = prompt,
107
+ negative_prompt = negative_prompt,
108
+ height = 1024,
109
+ width = 1024,
110
+ num_inference_steps= num_inference_steps,
111
+ guidance_scale = guidance_scale,
112
+ num_images_per_prompt = 1,
113
+ generator = generator,
114
+ face_crop_image = crop_image,
115
+ face_insightface_embeds = face_embeds
116
+ ).images[0]
117
+
118
+ return image, seed
119
+
120
+
121
+ examples = [
122
+ ["wearing a full suit sitting in a restaurant with candle lights ", "image/image1.png"],
123
+ ["Cowboy, cowboy hat, Wild Cowboy, background is a western town, cactus, sunset, warm colors, shot with XT4 film, noise, vignette, Kodak film, vintage", "image/image2.png"]
124
+ ]
125
+
126
+
127
+ css="""
128
+ #col-left {
129
+ margin: 0 auto;
130
+ max-width: 600px;
131
+ }
132
+ #col-right {
133
+ margin: 0 auto;
134
+ max-width: 750px;
135
+ }
136
+ #button {
137
+ color: blue;
138
+ }
139
+ """
140
+
141
+ def load_description(fp):
142
+ with open(fp, 'r', encoding='utf-8') as f:
143
+ content = f.read()
144
+ return content
145
+
146
+ with gr.Blocks(css=css) as Kolors:
147
+ gr.HTML(load_description("assets/title.md"))
148
+ with gr.Row():
149
+ with gr.Column(elem_id="col-left"):
150
+ with gr.Row():
151
+ prompt = gr.Textbox(
152
+ label="Prompt",
153
+ placeholder="Enter your prompt",
154
+ lines=2
155
+ )
156
+ with gr.Row():
157
+ image = gr.Image(label="Image", type="pil")
158
+ with gr.Accordion("Advanced Settings", open=False):
159
+ negative_prompt = gr.Textbox(
160
+ label="Negative prompt",
161
+ placeholder="Enter a negative prompt",
162
+ visible=True,
163
+ )
164
+ seed = gr.Slider(
165
+ label="Seed",
166
+ minimum=0,
167
+ maximum=MAX_SEED,
168
+ step=1,
169
+ value=0,
170
+ )
171
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
172
+ with gr.Row():
173
+ guidance_scale = gr.Slider(
174
+ label="Guidance scale",
175
+ minimum=0.0,
176
+ maximum=10.0,
177
+ step=0.1,
178
+ value=5.0,
179
+ )
180
+ num_inference_steps = gr.Slider(
181
+ label="Number of inference steps",
182
+ minimum=10,
183
+ maximum=50,
184
+ step=1,
185
+ value=25,
186
+ )
187
+ with gr.Row():
188
+ button = gr.Button("Run", elem_id="button")
189
+
190
+ with gr.Column(elem_id="col-right"):
191
+ result = gr.Image(label="Result", show_label=False)
192
+ seed_used = gr.Number(label="Seed Used")
193
+
194
+ with gr.Row():
195
+ gr.Examples(
196
+ fn = infer,
197
+ examples = examples,
198
+ inputs = [prompt, image],
199
+ outputs = [result, seed_used],
200
+ )
201
+
202
+ button.click(
203
+ fn = infer,
204
+ inputs = [prompt, image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
205
+ outputs = [result, seed_used]
206
+ )
207
+
208
+
209
+ SAK.queue().launch(debug=True)