SunderAli17 commited on
Commit
2b6b420
·
verified ·
1 Parent(s): 75891cd

Create flux/modules/layers.py

Browse files
Files changed (1) hide show
  1. flux/modules/layers.py +253 -0
flux/modules/layers.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from dataclasses import dataclass
3
+
4
+ import torch
5
+ from einops import rearrange
6
+ from torch import Tensor, nn
7
+
8
+ from flux.math import attention, rope
9
+
10
+
11
+ class EmbedND(nn.Module):
12
+ def __init__(self, dim: int, theta: int, axes_dim: list[int]):
13
+ super().__init__()
14
+ self.dim = dim
15
+ self.theta = theta
16
+ self.axes_dim = axes_dim
17
+
18
+ def forward(self, ids: Tensor) -> Tensor:
19
+ n_axes = ids.shape[-1]
20
+ emb = torch.cat(
21
+ [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
22
+ dim=-3,
23
+ )
24
+
25
+ return emb.unsqueeze(1)
26
+
27
+
28
+ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
29
+ """
30
+ Create sinusoidal timestep embeddings.
31
+ :param t: a 1-D Tensor of N indices, one per batch element.
32
+ These may be fractional.
33
+ :param dim: the dimension of the output.
34
+ :param max_period: controls the minimum frequency of the embeddings.
35
+ :return: an (N, D) Tensor of positional embeddings.
36
+ """
37
+ t = time_factor * t
38
+ half = dim // 2
39
+ freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
40
+ t.device
41
+ )
42
+
43
+ args = t[:, None].float() * freqs[None]
44
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
45
+ if dim % 2:
46
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
47
+ if torch.is_floating_point(t):
48
+ embedding = embedding.to(t)
49
+ return embedding
50
+
51
+
52
+ class MLPEmbedder(nn.Module):
53
+ def __init__(self, in_dim: int, hidden_dim: int):
54
+ super().__init__()
55
+ self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
56
+ self.silu = nn.SiLU()
57
+ self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
58
+
59
+ def forward(self, x: Tensor) -> Tensor:
60
+ return self.out_layer(self.silu(self.in_layer(x)))
61
+
62
+
63
+ class RMSNorm(torch.nn.Module):
64
+ def __init__(self, dim: int):
65
+ super().__init__()
66
+ self.scale = nn.Parameter(torch.ones(dim))
67
+
68
+ def forward(self, x: Tensor):
69
+ x_dtype = x.dtype
70
+ x = x.float()
71
+ rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
72
+ return (x * rrms).to(dtype=x_dtype) * self.scale
73
+
74
+
75
+ class QKNorm(torch.nn.Module):
76
+ def __init__(self, dim: int):
77
+ super().__init__()
78
+ self.query_norm = RMSNorm(dim)
79
+ self.key_norm = RMSNorm(dim)
80
+
81
+ def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
82
+ q = self.query_norm(q)
83
+ k = self.key_norm(k)
84
+ return q.to(v), k.to(v)
85
+
86
+
87
+ class SelfAttention(nn.Module):
88
+ def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
89
+ super().__init__()
90
+ self.num_heads = num_heads
91
+ head_dim = dim // num_heads
92
+
93
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
94
+ self.norm = QKNorm(head_dim)
95
+ self.proj = nn.Linear(dim, dim)
96
+
97
+ def forward(self, x: Tensor, pe: Tensor) -> Tensor:
98
+ qkv = self.qkv(x)
99
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
100
+ q, k = self.norm(q, k, v)
101
+ x = attention(q, k, v, pe=pe)
102
+ x = self.proj(x)
103
+ return x
104
+
105
+
106
+ @dataclass
107
+ class ModulationOut:
108
+ shift: Tensor
109
+ scale: Tensor
110
+ gate: Tensor
111
+
112
+
113
+ class Modulation(nn.Module):
114
+ def __init__(self, dim: int, double: bool):
115
+ super().__init__()
116
+ self.is_double = double
117
+ self.multiplier = 6 if double else 3
118
+ self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
119
+
120
+ def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut]:
121
+ out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
122
+
123
+ return (
124
+ ModulationOut(*out[:3]),
125
+ ModulationOut(*out[3:]) if self.is_double else None,
126
+ )
127
+
128
+
129
+ class DoubleStreamBlock(nn.Module):
130
+ def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
131
+ super().__init__()
132
+
133
+ mlp_hidden_dim = int(hidden_size * mlp_ratio)
134
+ self.num_heads = num_heads
135
+ self.hidden_size = hidden_size
136
+ self.img_mod = Modulation(hidden_size, double=True)
137
+ self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
138
+ self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
139
+
140
+ self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
141
+ self.img_mlp = nn.Sequential(
142
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
143
+ nn.GELU(approximate="tanh"),
144
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
145
+ )
146
+
147
+ self.txt_mod = Modulation(hidden_size, double=True)
148
+ self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
149
+ self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
150
+
151
+ self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
152
+ self.txt_mlp = nn.Sequential(
153
+ nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
154
+ nn.GELU(approximate="tanh"),
155
+ nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
156
+ )
157
+
158
+ def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
159
+ img_mod1, img_mod2 = self.img_mod(vec)
160
+ txt_mod1, txt_mod2 = self.txt_mod(vec)
161
+
162
+ # prepare image for attention
163
+ img_modulated = self.img_norm1(img)
164
+ img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
165
+ img_qkv = self.img_attn.qkv(img_modulated)
166
+ img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
167
+ img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
168
+
169
+ # prepare txt for attention
170
+ txt_modulated = self.txt_norm1(txt)
171
+ txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
172
+ txt_qkv = self.txt_attn.qkv(txt_modulated)
173
+ txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
174
+ txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
175
+
176
+ # run actual attention
177
+ q = torch.cat((txt_q, img_q), dim=2)
178
+ k = torch.cat((txt_k, img_k), dim=2)
179
+ v = torch.cat((txt_v, img_v), dim=2)
180
+
181
+ attn = attention(q, k, v, pe=pe)
182
+ txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
183
+
184
+ # calculate the img bloks
185
+ img = img + img_mod1.gate * self.img_attn.proj(img_attn)
186
+ img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
187
+
188
+ # calculate the txt bloks
189
+ txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
190
+ txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
191
+ return img, txt
192
+
193
+
194
+ class SingleStreamBlock(nn.Module):
195
+ """
196
+ A DiT block with parallel linear layers as described in
197
+ https://arxiv.org/abs/2302.05442 and adapted modulation interface.
198
+ """
199
+
200
+ def __init__(
201
+ self,
202
+ hidden_size: int,
203
+ num_heads: int,
204
+ mlp_ratio: float = 4.0,
205
+ qk_scale: float = None,
206
+ ):
207
+ super().__init__()
208
+ self.hidden_dim = hidden_size
209
+ self.num_heads = num_heads
210
+ head_dim = hidden_size // num_heads
211
+ self.scale = qk_scale or head_dim**-0.5
212
+
213
+ self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
214
+ # qkv and mlp_in
215
+ self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
216
+ # proj and mlp_out
217
+ self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
218
+
219
+ self.norm = QKNorm(head_dim)
220
+
221
+ self.hidden_size = hidden_size
222
+ self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
223
+
224
+ self.mlp_act = nn.GELU(approximate="tanh")
225
+ self.modulation = Modulation(hidden_size, double=False)
226
+
227
+ def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
228
+ mod, _ = self.modulation(vec)
229
+ x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
230
+ qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
231
+
232
+ q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
233
+ q, k = self.norm(q, k, v)
234
+
235
+ # compute attention
236
+ attn = attention(q, k, v, pe=pe)
237
+ # compute activation in mlp stream, cat again and run second linear layer
238
+ output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
239
+ return x + mod.gate * output
240
+
241
+
242
+ class LastLayer(nn.Module):
243
+ def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
244
+ super().__init__()
245
+ self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
246
+ self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
247
+ self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
248
+
249
+ def forward(self, x: Tensor, vec: Tensor) -> Tensor:
250
+ shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
251
+ x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
252
+ x = self.linear(x)
253
+ return x