Spaces:
Running
on
Zero
Running
on
Zero
SunderAli17
commited on
Create model.py
Browse files- flux/model.py +135 -0
flux/model.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor, nn
|
5 |
+
|
6 |
+
from flux.modules.layers import (
|
7 |
+
DoubleStreamBlock,
|
8 |
+
EmbedND,
|
9 |
+
LastLayer,
|
10 |
+
MLPEmbedder,
|
11 |
+
SingleStreamBlock,
|
12 |
+
timestep_embedding,
|
13 |
+
)
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class FluxParams:
|
18 |
+
in_channels: int
|
19 |
+
vec_in_dim: int
|
20 |
+
context_in_dim: int
|
21 |
+
hidden_size: int
|
22 |
+
mlp_ratio: float
|
23 |
+
num_heads: int
|
24 |
+
depth: int
|
25 |
+
depth_single_blocks: int
|
26 |
+
axes_dim: list[int]
|
27 |
+
theta: int
|
28 |
+
qkv_bias: bool
|
29 |
+
guidance_embed: bool
|
30 |
+
|
31 |
+
|
32 |
+
class Flux(nn.Module):
|
33 |
+
"""
|
34 |
+
Transformer model for flow matching on sequences.
|
35 |
+
"""
|
36 |
+
|
37 |
+
def __init__(self, params: FluxParams):
|
38 |
+
super().__init__()
|
39 |
+
|
40 |
+
self.params = params
|
41 |
+
self.in_channels = params.in_channels
|
42 |
+
self.out_channels = self.in_channels
|
43 |
+
if params.hidden_size % params.num_heads != 0:
|
44 |
+
raise ValueError(
|
45 |
+
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
46 |
+
)
|
47 |
+
pe_dim = params.hidden_size // params.num_heads
|
48 |
+
if sum(params.axes_dim) != pe_dim:
|
49 |
+
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
50 |
+
self.hidden_size = params.hidden_size
|
51 |
+
self.num_heads = params.num_heads
|
52 |
+
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
53 |
+
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
54 |
+
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
55 |
+
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
56 |
+
self.guidance_in = (
|
57 |
+
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
58 |
+
)
|
59 |
+
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
60 |
+
|
61 |
+
self.double_blocks = nn.ModuleList(
|
62 |
+
[
|
63 |
+
DoubleStreamBlock(
|
64 |
+
self.hidden_size,
|
65 |
+
self.num_heads,
|
66 |
+
mlp_ratio=params.mlp_ratio,
|
67 |
+
qkv_bias=params.qkv_bias,
|
68 |
+
)
|
69 |
+
for _ in range(params.depth)
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
self.single_blocks = nn.ModuleList(
|
74 |
+
[
|
75 |
+
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
76 |
+
for _ in range(params.depth_single_blocks)
|
77 |
+
]
|
78 |
+
)
|
79 |
+
|
80 |
+
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
81 |
+
|
82 |
+
self.pulid_ca = None
|
83 |
+
self.pulid_double_interval = 2
|
84 |
+
self.pulid_single_interval = 4
|
85 |
+
|
86 |
+
def forward(
|
87 |
+
self,
|
88 |
+
img: Tensor,
|
89 |
+
img_ids: Tensor,
|
90 |
+
txt: Tensor,
|
91 |
+
txt_ids: Tensor,
|
92 |
+
timesteps: Tensor,
|
93 |
+
y: Tensor,
|
94 |
+
guidance: Tensor = None,
|
95 |
+
id: Tensor = None,
|
96 |
+
id_weight: float = 1.0,
|
97 |
+
) -> Tensor:
|
98 |
+
if img.ndim != 3 or txt.ndim != 3:
|
99 |
+
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
100 |
+
|
101 |
+
# running on sequences img
|
102 |
+
img = self.img_in(img)
|
103 |
+
vec = self.time_in(timestep_embedding(timesteps, 256))
|
104 |
+
if self.params.guidance_embed:
|
105 |
+
if guidance is None:
|
106 |
+
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
107 |
+
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
108 |
+
vec = vec + self.vector_in(y)
|
109 |
+
txt = self.txt_in(txt)
|
110 |
+
|
111 |
+
ids = torch.cat((txt_ids, img_ids), dim=1)
|
112 |
+
pe = self.pe_embedder(ids)
|
113 |
+
|
114 |
+
ca_idx = 0
|
115 |
+
for i, block in enumerate(self.double_blocks):
|
116 |
+
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
117 |
+
|
118 |
+
if i % self.pulid_double_interval == 0 and id is not None:
|
119 |
+
img = img + id_weight * self.pulid_ca[ca_idx](id, img)
|
120 |
+
ca_idx += 1
|
121 |
+
|
122 |
+
img = torch.cat((txt, img), 1)
|
123 |
+
for i, block in enumerate(self.single_blocks):
|
124 |
+
x = block(img, vec=vec, pe=pe)
|
125 |
+
real_img, txt = x[:, txt.shape[1]:, ...], x[:, :txt.shape[1], ...]
|
126 |
+
|
127 |
+
if i % self.pulid_single_interval == 0 and id is not None:
|
128 |
+
real_img = real_img + id_weight * self.pulid_ca[ca_idx](id, real_img)
|
129 |
+
ca_idx += 1
|
130 |
+
|
131 |
+
img = torch.cat((txt, real_img), 1)
|
132 |
+
img = img[:, txt.shape[1] :, ...]
|
133 |
+
|
134 |
+
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
135 |
+
return img
|