Spaces:
Runtime error
Runtime error
remove unused parts
Browse files
app.py
CHANGED
@@ -26,12 +26,6 @@ DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/F
|
|
26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
28 |
|
29 |
-
def fig_to_pil(fig):
|
30 |
-
buf = io.BytesIO()
|
31 |
-
fig.savefig(buf, format='png')
|
32 |
-
buf.seek(0)
|
33 |
-
return Image.open(buf)
|
34 |
-
|
35 |
@spaces.GPU
|
36 |
def run_example(task_prompt, image, text_input=None):
|
37 |
if text_input is None:
|
@@ -53,138 +47,14 @@ def run_example(task_prompt, image, text_input=None):
|
|
53 |
task=task_prompt,
|
54 |
image_size=(image.width, image.height)
|
55 |
)
|
56 |
-
return parsed_answer
|
57 |
-
|
58 |
-
def
|
59 |
-
fig, ax = plt.subplots()
|
60 |
-
ax.imshow(image)
|
61 |
-
for bbox, label in zip(data['bboxes'], data['labels']):
|
62 |
-
x1, y1, x2, y2 = bbox
|
63 |
-
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
64 |
-
ax.add_patch(rect)
|
65 |
-
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
66 |
-
ax.axis('off')
|
67 |
-
return fig
|
68 |
-
|
69 |
-
def draw_polygons(image, prediction, fill_mask=False):
|
70 |
-
|
71 |
-
draw = ImageDraw.Draw(image)
|
72 |
-
scale = 1
|
73 |
-
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
74 |
-
color = random.choice(colormap)
|
75 |
-
fill_color = random.choice(colormap) if fill_mask else None
|
76 |
-
for _polygon in polygons:
|
77 |
-
_polygon = np.array(_polygon).reshape(-1, 2)
|
78 |
-
if len(_polygon) < 3:
|
79 |
-
print('Invalid polygon:', _polygon)
|
80 |
-
continue
|
81 |
-
_polygon = (_polygon * scale).reshape(-1).tolist()
|
82 |
-
if fill_mask:
|
83 |
-
draw.polygon(_polygon, outline=color, fill=fill_color)
|
84 |
-
else:
|
85 |
-
draw.polygon(_polygon, outline=color)
|
86 |
-
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
87 |
-
return image
|
88 |
-
|
89 |
-
def convert_to_od_format(data):
|
90 |
-
bboxes = data.get('bboxes', [])
|
91 |
-
labels = data.get('bboxes_labels', [])
|
92 |
-
od_results = {
|
93 |
-
'bboxes': bboxes,
|
94 |
-
'labels': labels
|
95 |
-
}
|
96 |
-
return od_results
|
97 |
-
|
98 |
-
def draw_ocr_bboxes(image, prediction):
|
99 |
-
scale = 1
|
100 |
-
draw = ImageDraw.Draw(image)
|
101 |
-
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
102 |
-
for box, label in zip(bboxes, labels):
|
103 |
-
color = random.choice(colormap)
|
104 |
-
new_box = (np.array(box) * scale).tolist()
|
105 |
-
draw.polygon(new_box, width=3, outline=color)
|
106 |
-
draw.text((new_box[0]+8, new_box[1]+2),
|
107 |
-
"{}".format(label),
|
108 |
-
align="right",
|
109 |
-
fill=color)
|
110 |
-
return image
|
111 |
-
|
112 |
-
def process_image(image, task_prompt, text_input=None):
|
113 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
elif task_prompt == 'Caption':
|
119 |
-
task_prompt = '<CAPTION>'
|
120 |
-
results = run_example(task_prompt, image)
|
121 |
-
return results, None
|
122 |
-
elif task_prompt == 'Detailed Caption':
|
123 |
-
task_prompt = '<DETAILED_CAPTION>'
|
124 |
-
results = run_example(task_prompt, image)
|
125 |
-
return results, None
|
126 |
-
elif task_prompt == 'More Detailed Caption':
|
127 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
128 |
-
results = run_example(task_prompt, image)
|
129 |
-
return results, None
|
130 |
-
elif task_prompt == 'Object Detection':
|
131 |
-
task_prompt = '<OD>'
|
132 |
-
results = run_example(task_prompt, image)
|
133 |
-
fig = plot_bbox(image, results['<OD>'])
|
134 |
-
return results, fig_to_pil(fig)
|
135 |
-
elif task_prompt == 'Dense Region Caption':
|
136 |
-
task_prompt = '<DENSE_REGION_CAPTION>'
|
137 |
-
results = run_example(task_prompt, image)
|
138 |
-
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
139 |
-
return results, fig_to_pil(fig)
|
140 |
-
elif task_prompt == 'Region Proposal':
|
141 |
-
task_prompt = '<REGION_PROPOSAL>'
|
142 |
-
results = run_example(task_prompt, image)
|
143 |
-
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
144 |
-
return results, fig_to_pil(fig)
|
145 |
-
elif task_prompt == 'Caption to Phrase Grounding':
|
146 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
147 |
-
results = run_example(task_prompt, image, text_input)
|
148 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
149 |
-
return results, fig_to_pil(fig)
|
150 |
-
elif task_prompt == 'Referring Expression Segmentation':
|
151 |
-
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
152 |
-
results = run_example(task_prompt, image, text_input)
|
153 |
-
output_image = copy.deepcopy(image)
|
154 |
-
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
155 |
-
return results, output_image
|
156 |
-
elif task_prompt == 'Region to Segmentation':
|
157 |
-
task_prompt = '<REGION_TO_SEGMENTATION>'
|
158 |
-
results = run_example(task_prompt, image, text_input)
|
159 |
-
output_image = copy.deepcopy(image)
|
160 |
-
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
161 |
-
return results, output_image
|
162 |
-
elif task_prompt == 'Open Vocabulary Detection':
|
163 |
-
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
164 |
-
results = run_example(task_prompt, image, text_input)
|
165 |
-
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
166 |
-
fig = plot_bbox(image, bbox_results)
|
167 |
-
return results, fig_to_pil(fig)
|
168 |
-
elif task_prompt == 'Region to Category':
|
169 |
-
task_prompt = '<REGION_TO_CATEGORY>'
|
170 |
-
results = run_example(task_prompt, image, text_input)
|
171 |
-
return results, None
|
172 |
-
elif task_prompt == 'Region to Description':
|
173 |
-
task_prompt = '<REGION_TO_DESCRIPTION>'
|
174 |
-
results = run_example(task_prompt, image, text_input)
|
175 |
-
return results, None
|
176 |
-
elif task_prompt == 'OCR':
|
177 |
-
task_prompt = '<OCR>'
|
178 |
-
results = run_example(task_prompt, image)
|
179 |
-
return results, None
|
180 |
-
elif task_prompt == 'OCR with Region':
|
181 |
-
task_prompt = '<OCR_WITH_REGION>'
|
182 |
-
results = run_example(task_prompt, image)
|
183 |
-
output_image = copy.deepcopy(image)
|
184 |
-
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
185 |
-
return results, output_image
|
186 |
-
else:
|
187 |
-
return "", None # Return empty string and None for unknown task prompts
|
188 |
|
189 |
css = """
|
190 |
#output {
|
@@ -200,14 +70,6 @@ with gr.Blocks(css=css) as demo:
|
|
200 |
with gr.Row():
|
201 |
with gr.Column():
|
202 |
input_img = gr.Image(label="Input Picture")
|
203 |
-
task_prompt = gr.Dropdown(choices=[
|
204 |
-
'Document Visual Question Answering',
|
205 |
-
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
206 |
-
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
207 |
-
'Referring Expression Segmentation', 'Region to Segmentation',
|
208 |
-
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
209 |
-
'OCR', 'OCR with Region'
|
210 |
-
], label="Task Prompt", value= 'Document Visual Question Answering')
|
211 |
text_input = gr.Textbox(label="Text Input (optional)")
|
212 |
submit_btn = gr.Button(value="Submit")
|
213 |
with gr.Column():
|
@@ -219,13 +81,13 @@ with gr.Blocks(css=css) as demo:
|
|
219 |
["image1.jpg", 'Object Detection'],
|
220 |
["image2.jpg", 'OCR with Region']
|
221 |
],
|
222 |
-
inputs=[input_img
|
223 |
outputs=[output_text, output_img],
|
224 |
fn=process_image,
|
225 |
cache_examples=True,
|
226 |
label='Try examples'
|
227 |
)
|
228 |
|
229 |
-
submit_btn.click(process_image, [input_img,
|
230 |
|
231 |
demo.launch(debug=True)
|
|
|
26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@spaces.GPU
|
30 |
def run_example(task_prompt, image, text_input=None):
|
31 |
if text_input is None:
|
|
|
47 |
task=task_prompt,
|
48 |
image_size=(image.width, image.height)
|
49 |
)
|
50 |
+
return parsed_answer
|
51 |
+
|
52 |
+
def process_image(image, text_input=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
54 |
+
task_prompt = '<DocVQA>'
|
55 |
+
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
|
56 |
+
return results, None
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
css = """
|
60 |
#output {
|
|
|
70 |
with gr.Row():
|
71 |
with gr.Column():
|
72 |
input_img = gr.Image(label="Input Picture")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
text_input = gr.Textbox(label="Text Input (optional)")
|
74 |
submit_btn = gr.Button(value="Submit")
|
75 |
with gr.Column():
|
|
|
81 |
["image1.jpg", 'Object Detection'],
|
82 |
["image2.jpg", 'OCR with Region']
|
83 |
],
|
84 |
+
inputs=[input_img],
|
85 |
outputs=[output_text, output_img],
|
86 |
fn=process_image,
|
87 |
cache_examples=True,
|
88 |
label='Try examples'
|
89 |
)
|
90 |
|
91 |
+
submit_btn.click(process_image, [input_img, text_input], [output_text, output_img])
|
92 |
|
93 |
demo.launch(debug=True)
|