ThaiNewsClassify / bert /bpe_helper.py
SuperBigtoo's picture
adding model thai_news_classify
93acf27
from math import log
class BPE(object):
def __init__(self, vocab_file):
with open(vocab_file, encoding="utf8") as f:
self.words = [l.split()[0] for l in f]
log_len = log(len(self.words))
self.wordcost = {
k: log((i+1) * log_len)
for i, k in enumerate(self.words)}
self.maxword = max(len(x) for x in self.words)
def encode(self, s):
"""Uses dynamic programming to infer the location of spaces in a string
without spaces."""
s = s.replace(" ", "▁")
# Find the best match for the i first characters, assuming cost has
# been built for the i-1 first characters.
# Returns a pair (match_cost, match_length).
def best_match(i):
candidates = enumerate(reversed(cost[max(0, i - self.maxword):i]))
return min(
(c + self.wordcost.get(s[i-k-1:i], 9e999), k+1)
for k, c in candidates)
# Build the cost array.
cost = [0]
for i in range(1, len(s) + 1):
c, k = best_match(i)
cost.append(c)
# Backtrack to recover the minimal-cost string.
out = []
i = len(s)
while i > 0:
c, k = best_match(i)
assert c == cost[i]
out.append(s[i-k:i])
i -= k
return " ".join(reversed(out))
if __name__ == "__main__":
bpe = BPE("en.wiki.bpe.op25000.vocab")
print(bpe.encode(' this is our house in boomchakalaka'))
# >>> ▁this ▁is ▁our ▁house ▁in ▁boom ch ak al aka