SuperViktor2 commited on
Commit
07d5446
1 Parent(s): a67ee09

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -39
app.py CHANGED
@@ -1,50 +1,24 @@
1
  import numpy as np
2
  import os
3
  import gradio as gr
 
 
4
 
5
  os.environ["WANDB_DISABLED"] = "true"
6
 
7
- from datasets import load_dataset, load_metric
8
- from transformers import (
9
- AutoConfig,
10
- # AutoModelForSequenceClassification,
11
- AutoTokenizer,
12
- TrainingArguments,
13
- logging,
14
- pipeline
15
- )
16
-
17
-
18
-
19
-
20
- # model_name =
21
-
22
-
23
- # tokenizer = AutoTokenizer.from_pretrained(model_name)
24
-
25
- # config = AutoConfig.from_pretrained(model_name)
26
-
27
- # pipe = pipeline("text-classification")
28
 
29
- # pipe("This restaurant is awesome")
30
-
31
-
32
-
33
-
34
- label2id = {
35
- "LABEL_0": "negative",
36
- "LABEL_1": "neutral",
37
- "LABEL_2": "positive"
38
- }
39
-
40
- analyzer = pipeline(
41
-
42
- "sentiment-analysis", model="thak123/Cro-Frida", tokenizer="EMBEDDIA/crosloengual-bert"
43
-
44
- )
45
- def predict_sentiment(x):
46
- return label2id[analyzer(x)[0]["label"]]
47
 
 
 
 
 
 
 
48
 
49
  interface = gr.Interface(
50
  fn=predict_sentiment,
 
1
  import numpy as np
2
  import os
3
  import gradio as gr
4
+ import xgboost as xgb
5
+ from sklearn.feature_extraction.text import TfidfVectorizer
6
 
7
  os.environ["WANDB_DISABLED"] = "true"
8
 
9
+ model_file_name = "xgb_reg.pkl"
10
+ vectorizer_file_name = 'vectorizer.pk'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ #load
13
+ xgb_model_loaded = pickle.load(open(model_file_name, "rb"))
14
+ vectorizer_loaded = pickle.load(open(vectorizer_file_name, "rb"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
+ # predict
17
+ def predict_sentiment(predict_texts):
18
+ predictions_loaded = xgb_model_loaded.predict(
19
+ vectorizer_loaded.transform(predict_texts))
20
+ return vectorizer_loaded
21
+ #le.inverse_transform(predictions_loaded)
22
 
23
  interface = gr.Interface(
24
  fn=predict_sentiment,