Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ os.environ["WANDB_DISABLED"] = "true"
|
|
7 |
from datasets import load_dataset, load_metric
|
8 |
from transformers import (
|
9 |
AutoConfig,
|
10 |
-
AutoModelForSequenceClassification,
|
11 |
AutoTokenizer,
|
12 |
TrainingArguments,
|
13 |
logging,
|
@@ -32,15 +32,15 @@ pipeline
|
|
32 |
|
33 |
|
34 |
# Question answering pipeline, specifying the checkpoint identifier
|
35 |
-
model = AutoModelForSequenceClassification.from_pretrained(
|
36 |
-
|
37 |
-
|
38 |
-
)
|
39 |
|
40 |
|
41 |
analyzer = pipeline(
|
42 |
|
43 |
-
"sentiment-analysis", model=
|
44 |
|
45 |
)
|
46 |
def predict_sentiment(x):
|
@@ -54,7 +54,7 @@ interface = gr.Interface(
|
|
54 |
fn=predict_sentiment,
|
55 |
inputs='text',
|
56 |
outputs=['label'],
|
57 |
-
title='
|
58 |
examples= ["Es mīlu Tevi","Es ienīstu kafiju"],
|
59 |
description='Get the positive/neutral/negative sentiment for the given input.'
|
60 |
)
|
|
|
7 |
from datasets import load_dataset, load_metric
|
8 |
from transformers import (
|
9 |
AutoConfig,
|
10 |
+
# AutoModelForSequenceClassification,
|
11 |
AutoTokenizer,
|
12 |
TrainingArguments,
|
13 |
logging,
|
|
|
32 |
|
33 |
|
34 |
# Question answering pipeline, specifying the checkpoint identifier
|
35 |
+
# model = AutoModelForSequenceClassification.from_pretrained(
|
36 |
+
# pretrained_model_name_or_path= "thak123/Cro-Frida",
|
37 |
+
# num_labels=3,
|
38 |
+
# )
|
39 |
|
40 |
|
41 |
analyzer = pipeline(
|
42 |
|
43 |
+
"sentiment-analysis", model="thak123/Cro-Frida", tokenizer="EMBEDDIA/crosloengual-bert"
|
44 |
|
45 |
)
|
46 |
def predict_sentiment(x):
|
|
|
54 |
fn=predict_sentiment,
|
55 |
inputs='text',
|
56 |
outputs=['label'],
|
57 |
+
title='Croatian Movie reviews Sentiment Analysis',
|
58 |
examples= ["Es mīlu Tevi","Es ienīstu kafiju"],
|
59 |
description='Get the positive/neutral/negative sentiment for the given input.'
|
60 |
)
|