thak123 commited on
Commit
990dc13
1 Parent(s): 31be0df

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +62 -0
app.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import gradio as gr
4
+
5
+ os.environ["WANDB_DISABLED"] = "true"
6
+
7
+ from datasets import load_dataset, load_metric
8
+ from transformers import (
9
+ AutoConfig,
10
+ AutoModelForSequenceClassification,
11
+ AutoTokenizer,
12
+ TrainingArguments,
13
+ logging,
14
+ pipeline
15
+ )
16
+
17
+
18
+
19
+
20
+ # model_name =
21
+
22
+
23
+ # tokenizer = AutoTokenizer.from_pretrained(model_name)
24
+
25
+ # config = AutoConfig.from_pretrained(model_name)
26
+
27
+ # pipe = pipeline("text-classification")
28
+
29
+ # pipe("This restaurant is awesome")
30
+
31
+
32
+
33
+
34
+ # Question answering pipeline, specifying the checkpoint identifier
35
+ model = AutoModelForSequenceClassification.from_pretrained(
36
+ pretrained_model_name_or_path= "thak123/Cro-Frida",
37
+ num_labels=3,
38
+ )
39
+
40
+
41
+ analyzer = pipeline(
42
+
43
+ "sentiment-analysis", model=model, tokenizer="EMBEDDIA/crosloengual-bert"
44
+
45
+ )
46
+ def predict_sentiment(x):
47
+ return analyzer(x)
48
+
49
+
50
+
51
+
52
+
53
+ interface = gr.Interface(
54
+ fn=predict_sentiment,
55
+ inputs='text',
56
+ outputs=['label'],
57
+ title='Latvian Twitter Sentiment Analysis',
58
+ examples= ["Es mīlu Tevi","Es ienīstu kafiju"],
59
+ description='Get the positive/neutral/negative sentiment for the given input.'
60
+ )
61
+
62
+ interface.launch(inline = False)