Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
os.environ["WANDB_DISABLED"] = "true"
|
6 |
+
|
7 |
+
from datasets import load_dataset, load_metric
|
8 |
+
from transformers import (
|
9 |
+
AutoConfig,
|
10 |
+
AutoModelForSequenceClassification,
|
11 |
+
AutoTokenizer,
|
12 |
+
TrainingArguments,
|
13 |
+
logging,
|
14 |
+
pipeline
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
# model_name =
|
21 |
+
|
22 |
+
|
23 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_name)
|
24 |
+
|
25 |
+
# config = AutoConfig.from_pretrained(model_name)
|
26 |
+
|
27 |
+
# pipe = pipeline("text-classification")
|
28 |
+
|
29 |
+
# pipe("This restaurant is awesome")
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
# Question answering pipeline, specifying the checkpoint identifier
|
35 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
36 |
+
pretrained_model_name_or_path= "thak123/Cro-Frida",
|
37 |
+
num_labels=3,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
analyzer = pipeline(
|
42 |
+
|
43 |
+
"sentiment-analysis", model=model, tokenizer="EMBEDDIA/crosloengual-bert"
|
44 |
+
|
45 |
+
)
|
46 |
+
def predict_sentiment(x):
|
47 |
+
return analyzer(x)
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
interface = gr.Interface(
|
54 |
+
fn=predict_sentiment,
|
55 |
+
inputs='text',
|
56 |
+
outputs=['label'],
|
57 |
+
title='Latvian Twitter Sentiment Analysis',
|
58 |
+
examples= ["Es mīlu Tevi","Es ienīstu kafiju"],
|
59 |
+
description='Get the positive/neutral/negative sentiment for the given input.'
|
60 |
+
)
|
61 |
+
|
62 |
+
interface.launch(inline = False)
|