Spaces:
Sleeping
Sleeping
Upload app_py.py
Browse files
app_py.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""app.py
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1J1hXUB5eoxFBDoclJh3sO2ehEIFKr3Pw
|
8 |
+
"""
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import tensorflow as tf
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
# ขนาดภาพที่ใช้ในโมเดล
|
16 |
+
IMG_SIZE = (224, 224)
|
17 |
+
|
18 |
+
# สร้าง Dictionary ที่เก็บชื่อโมเดลและ path ไฟล์ .h5
|
19 |
+
model_paths = {
|
20 |
+
"Custom CNN": "Custom_CNN_model.h5",
|
21 |
+
"VGG16": "VGG16_model.h5",
|
22 |
+
"ResNet50": "ResNet50_model.h5"
|
23 |
+
}
|
24 |
+
|
25 |
+
# ฟังก์ชันเตรียมข้อมูลภาพ
|
26 |
+
def preprocess_image(image):
|
27 |
+
image = image.resize(IMG_SIZE) # Resize
|
28 |
+
image = np.array(image) / 255.0 # Normalize
|
29 |
+
image = np.expand_dims(image, axis=0) # เพิ่ม batch dimension
|
30 |
+
return image
|
31 |
+
|
32 |
+
# ฟังก์ชันทำนาย โดยเลือกโมเดล
|
33 |
+
def predict_with_model(image, model_name):
|
34 |
+
# โหลดโมเดลที่เลือก
|
35 |
+
model = tf.keras.models.load_model(model_paths[model_name])
|
36 |
+
|
37 |
+
# เตรียมภาพ
|
38 |
+
processed_image = preprocess_image(image)
|
39 |
+
|
40 |
+
# ทำนายผล
|
41 |
+
prediction = model.predict(processed_image)[0][0] # ได้ค่าความน่าจะเป็น
|
42 |
+
class_name = "Stroke" if prediction > 0.5 else "Non-Stroke"
|
43 |
+
confidence = round(float(prediction if prediction > 0.5 else 1 - prediction) * 100, 2)
|
44 |
+
|
45 |
+
# คืนผลลัพธ์
|
46 |
+
return f"\n\n🧠 Prediction Result\n---------------------------\nClass: {class_name}\nConfidence: {confidence}%"
|
47 |
+
|
48 |
+
# Gradio Interface
|
49 |
+
interface = gr.Interface(
|
50 |
+
fn=predict_with_model,
|
51 |
+
inputs=[
|
52 |
+
gr.Image(type="pil", label="🖼️ Upload Face Image"),
|
53 |
+
gr.Dropdown(choices=["Custom CNN", "VGG16", "ResNet50"], label="📊 Select Model to Classify")
|
54 |
+
],
|
55 |
+
outputs=gr.Textbox(label="📝 Prediction Output", lines=5), # ช่อง Output ใหญ่ขึ้น
|
56 |
+
title="🧠 Stroke Face Classification",
|
57 |
+
description="Upload a face image to predict whether the person has stroke or not. Select model to classify. The output will show the prediction result clearly."
|
58 |
+
)
|
59 |
+
|
60 |
+
# Run app
|
61 |
+
if __name__ == "__main__":
|
62 |
+
interface.launch()
|