Spaces:
Build error
Build error
File size: 22,750 Bytes
64772a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 |
import os
import uuid
from llama_index.vector_stores.qdrant import QdrantVectorStore
from llama_index.core import VectorStoreIndex, StorageContext
import qdrant_client
import torch
from langchain.text_splitter import RecursiveCharacterTextSplitter
import clip
from llama_index.core import Document
from langchain_community.llms import LlamaCpp
import numpy as np
from huggingface_hub import hf_hub_download
from langchain_community.llms import LlamaCpp
from llama_index.core import (
ServiceContext,
SimpleDirectoryReader,
)
import threading
from dotenv import load_dotenv
from llama_index.llms.nvidia import NVIDIA
from open_clip import create_model_from_pretrained, get_tokenizer
from llama_index.core import Settings
from llama_index.core import VectorStoreIndex
from llama_index.core.vector_stores import VectorStoreQuery
from llama_index.core.query_engine import RetrieverQueryEngine
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModel
from langchain.embeddings.base import Embeddings
from llama_index.embeddings.langchain import LangchainEmbedding
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from llama_index.core import Settings
from transformers import AutoProcessor, AutoModel
import hashlib
import uuid
import os
import gradio as gr
import torch
import clip
import open_clip
import numpy as np
from llama_index.core.schema import ImageDocument
import cv2
import matplotlib.pyplot as plt
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from unstructured.partition.pdf import partition_pdf
from pathlib import Path
from langchain_community.document_loaders import DirectoryLoader, UnstructuredFileLoader
from PIL import Image
import logging
import concurrent.futures
import logging
from llama_index.core import set_global_service_context
from llama_index.core import Document as LlamaIndexDocument
import getpass
import os
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
from sentence_transformers import util
from transformers import AutoTokenizer, AutoModelForCausalLM
import base64
from google.generativeai import GenerativeModel, configure
import google.generativeai as genai
# Configure logging
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class MetadataMode:
EMBED = "embed"
INLINE = "inline"
NONE = "none"
# Define the vectors configuration
vectors_config = {
"vector_size": 768, # or whatever the dimensionality of your vectors is
"distance": "Cosine" # can be "Cosine", "Euclidean", etc.
}
class ClinicalBertEmbeddingWrapper:
def __init__(self, model_name: str = "medicalai/ClinicalBERT"):
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModel.from_pretrained(model_name)
self.model.eval()
def embed(self, text: str):
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
outputs = self.model(**inputs)
embeddings = self.mean_pooling(outputs, inputs['attention_mask'])
return embeddings.squeeze().tolist()
def mean_pooling(self, model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
def embed_documents(self, texts):
return [self.embed(text) for text in texts]
def embed_query(self, text):
return self.embed(text)
# Implement this method if needed
def get_text_embedding_batch(self, text_batch, show_progress=False):
embeddings = []
num_batches = len(text_batch)
# Process in batches of size 8
batch_size = 8
for i in tqdm(range(0, num_batches, batch_size), desc="Processing Batches", disable=not show_progress):
batch_texts = text_batch[i:i + batch_size]
batch_embeddings = self.embed_documents(batch_texts)
embeddings.extend(batch_embeddings)
return embeddings
def get_agg_embedding_from_queries(self, queries):
# Get embeddings for each query using the embed method
embeddings = [torch.tensor(self.embed(query)) for query in queries]
# Convert list of tensors to a single tensor for aggregation
embeddings_tensor = torch.stack(embeddings)
# Example: averaging embeddings
agg_embedding = embeddings_tensor.mean(dim=0)
return agg_embedding.tolist()
# Load environment variables
load_dotenv()
genai.configure(api_key=os.environ["GEMINI_API_KEY"])
nvidia_api_key = os.getenv("NVIDIA_API_KEY")
if not nvidia_api_key:
raise ValueError("NVIDIA_API_KEY not found in .env file")
os.environ["NVIDIA_API_KEY"] = nvidia_api_key
model_name = "aaditya/OpenBioLLM-Llama3-8B-GGUF"
model_file = "openbiollm-llama3-8b.Q5_K_M.gguf"
QDRANT_URL = "https://f1e9a70a-afb9-498d-b66d-cb248e0d5557.us-east4-0.gcp.cloud.qdrant.io:6333"
QDRANT_API_KEY = "REXlX_PeDvCoXeS9uKCzC--e3-LQV0lw3_jBTdcLZ7P5_F6EOdwklA"
# Download model
model_path = hf_hub_download(model_name, filename=model_file, local_dir='./')
llm = NVIDIA(model="writer/palmyra-med-70b")
llm.model
local_llm = "openbiollm-llama3-8b.Q5_K_M.gguf"
# Initialize ClinicalBert embeddings model
# text_embed_model = ClinicalBertEmbeddings(model_name="medicalai/ClinicalBERT")
text_embed_model = ClinicalBertEmbeddingWrapper(model_name="medicalai/ClinicalBERT")
# Intially I was using this biollm but for faster text response during inference I am going for external models
#but with this also it works fine.
llm1 = LlamaCpp(
model_path=local_llm,
temperature=0.3,
n_ctx=2048,
top_p=1
)
Settings.llm = llm
Settings.embed_model = text_embed_model
# Define ServiceContext with ClinicalBertEmbeddings for text
service_context = ServiceContext.from_defaults(
llm = llm,
embed_model=text_embed_model # Use ClinicalBert embeddings model
)
set_global_service_context(service_context)
# Just for logging and Debugging
# Log ServiceContext details
# logging.debug(f"LLM: {service_context.llm}")
# logging.debug(f"Embed Model: {service_context.embed_model}")
# logging.debug(f"Node Parser: {service_context.node_parser}")
# logging.debug(f"Prompt Helper: {service_context.prompt_helper}")
# Create QdrantClient with the location set to ":memory:", which means the vector db will be stored in memory
try:
text_client = qdrant_client.QdrantClient(
url=QDRANT_URL,
api_key=QDRANT_API_KEY,
port=443,
)
print("Qdrant client initialized successfully.")
except Exception as e:
print(f"Error initializing Qdrant client: {e}")
raise
# load Text documents from the data_wiki directory
# text_documents = SimpleDirectoryReader("./Data").load_data()
# Load documents
loader = DirectoryLoader("./Data/", glob="**/*.pdf", show_progress=True, loader_cls=UnstructuredFileLoader)
documents = loader.load()
# Print document names
for doc in documents:
print(f"Processing document: {doc.metadata.get('source', 'Unknown')}")
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=700, chunk_overlap=70)
texts = text_splitter.split_documents(documents)
print(f"Loaded {len(documents)} documents")
print(f"Split into {len(texts)} chunks")
# Convert langchain documents to llama_index documents
text_documents = [
LlamaIndexDocument(text=t.page_content, metadata=t.metadata)
for t in texts
]
# Initialize Qdrant vector store
try:
text_vector_store = QdrantVectorStore(
client=text_client, collection_name="pdf_text"
)
print("Qdrant vector store initialized successfully.")
except Exception as e:
print(f"Error initializing Qdrant vector store: {e}")
raise
try:
image_vector_store = QdrantVectorStore(
client=text_client, collection_name="pdf_img"
)
print("Qdrant vector store initialized successfully.")
except Exception as e:
print(f"Error initializing Qdrant vector store: {e}")
raise
storage_context = StorageContext.from_defaults(vector_store=text_vector_store)
wiki_text_index = VectorStoreIndex.from_documents(text_documents
# , storage_context=storage_context
, service_context=service_context
)
print(f"VectorStoreIndex created with {len(wiki_text_index.docstore.docs)} documents")
# define the streaming query engine
streaming_qe = wiki_text_index.as_query_engine(streaming=True)
print(len(text_documents))
# Function to query the text vector database
# Modify the process_query function
model, preprocess = clip.load("ViT-B/32")
input_resolution = model.visual.input_resolution
context_length = model.context_length
vocab_size = model.vocab_size
print(
"Model parameters:",
f"{np.sum([int(np.prod(p.shape)) for p in model.parameters()]):,}",
)
print("Input resolution:", input_resolution)
print("Context length:", context_length)
print("Vocab size:", vocab_size)
pdf_directory = Path("./data")
image_path = Path("./images1")
image_path.mkdir(exist_ok=True, parents=True)
# Dictionary to store image metadata
image_metadata_dict = {}
# Limit the number of images downloaded per PDF
MAX_IMAGES_PER_PDF = 15
# Generate a UUID for each image
image_uuid = 0
# Iterate over each PDF file in the data folder
for pdf_file in pdf_directory.glob("*.pdf"):
images_per_pdf = 0
print(f"Processing: {pdf_file}")
# Extract images from the PDF
try:
raw_pdf_elements = partition_pdf(
filename=str(pdf_file),
extract_images_in_pdf=True,
infer_table_structure=True,
chunking_strategy="by_title",
max_characters=4000,
new_after_n_chars=3800,
combine_text_under_n_chars=2000,
extract_image_block_output_dir=image_path,
)
# Loop through the elements
except Exception as e:
print(f"Error processing {pdf_file}: {e}")
import traceback
traceback.print_exc()
continue
# Function to summarize images
def summarize_image(image_path):
# Load and encode the image
with open(image_path, "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
# Create a GenerativeModel object
model = GenerativeModel('gemini-1.5-flash')
# Prepare the prompt
prompt = """
You are an expert in analyzing medical images. Please provide a detailed description of this medical image, including:
1. You are a bot that is good at analyzing images related to Dog's health
2. The body part or area being examined
3. Any visible structures, organs, or tissues
4. Any abnormalities, lesions, or notable features
5. Any other relevant medical diagram description.
Please be as specific and detailed as possible in your analysis.
"""
# Generate the response
response = model.generate_content([
prompt,
{"mime_type": "image/jpeg", "data": encoded_image}
])
return response.text
# # Iterate through each file in the directory
for image_file in os.listdir(image_path):
if image_file.endswith(('.jpg', '.jpeg', '.png')):
# Generate a standard UUID for the image
image_uuid = str(uuid.uuid4())
image_file_name = image_file
image_file_path = image_path / image_file
# Generate image summary
# image_summary = generate_image_summary_with(str(image_file_path), model, feature_extractor, tokenizer, device)
# image_summary = generate_summary_with_lm(str(image_file_path), preprocess, model, device, tokenizer, lm_model)
image_summary = summarize_image(image_file_path)
# Construct metadata entry for the image
image_metadata_dict[image_uuid] = {
"filename": image_file_name,
"img_path": str(image_file_path), # Store the absolute path to the image
"summary": image_summary # Add the summary to the metadata
}
# Limit the number of images processed per folder
if len(image_metadata_dict) >= MAX_IMAGES_PER_PDF:
break
print(f"Number of items in image_dict: {len(image_metadata_dict)}")
# Print the metadata dictionary
for key, value in image_metadata_dict.items():
print(f"UUID: {key}, Metadata: {value}")
def plot_images_with_opencv(image_metadata_dict):
original_images_urls = []
images_shown = 0
plt.figure(figsize=(16, 16)) # Adjust the figure size as needed
for image_id in image_metadata_dict:
img_path = image_metadata_dict[image_id]["img_path"]
if os.path.isfile(img_path):
try:
img = cv2.imread(img_path)
if img is not None:
# Convert BGR (OpenCV) to RGB (matplotlib)
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.subplot(8, 8, len(original_images_urls) + 1)
plt.imshow(img_rgb)
plt.xticks([])
plt.yticks([])
original_images_urls.append(image_metadata_dict[image_id]["filename"])
images_shown += 1
if images_shown >= 64:
break
except Exception as e:
print(f"Error processing image {img_path}: {e}")
plt.tight_layout()
plt.show()
plot_images_with_opencv(image_metadata_dict)
# set the device to use for the CLIP model, either CUDA (GPU) or CPU, depending on availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(device)
# Function to preprocess image using OpenCV
def preprocess_image(img):
# Convert BGR to RGB
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# Convert the image to a PIL Image and then preprocess
img_pil = Image.fromarray(img_rgb)
return preprocess(img_pil)
# Use BiomedCLIP processor for preprocessing
# return preprocess(images=img_pil, return_tensors="pt")
# return preprocess(img_pil).unsqueeze(0)
img_emb_dict = {}
with torch.no_grad():
for image_id in image_metadata_dict:
img_file_path = image_metadata_dict[image_id]["img_path"]
if os.path.isfile(img_file_path):
try:
# Load image using OpenCV
img = cv2.imread(img_file_path)
if img is not None:
# Preprocess image
image = preprocess_image(img).unsqueeze(0).to(device)
# image = preprocess_image(img).to(device)
# Extract image features
image_features = model.encode_image(image)
# Store image features
img_emb_dict[image_id] = image_features
else:
print(f"Failed to load image {img_file_path}")
except Exception as e:
print(f"Error processing image {img_file_path}: {e}")
len(img_emb_dict) #22 image so 22 img emb
# create a list of ImageDocument objects, one for each image in the dataset
img_documents = []
for image_filename in image_metadata_dict:
# the img_emb_dict dictionary contains the image embeddings
if image_filename in img_emb_dict:
filename = image_metadata_dict[image_filename]["filename"]
filepath = image_metadata_dict[image_filename]["img_path"]
summary = image_metadata_dict[image_filename]["summary"]
#print(filepath)
# create an ImageDocument for each image
newImgDoc = ImageDocument(
text=filename, metadata={"filepath": filepath, "summary": summary} # Include the summary in the metadata
)
# set image embedding on the ImageDocument
newImgDoc.embedding = img_emb_dict[image_filename].tolist()[0]
img_documents.append(newImgDoc)
# define storage context
storage_context = StorageContext.from_defaults(vector_store=image_vector_store)
# define image index
image_index = VectorStoreIndex.from_documents(
img_documents,
storage_context=storage_context
)
# for doc in img_documents:
# print(f"ImageDocument: {doc.text}, Embedding: {doc.embedding}, Metadata: {doc.metadata}")
def retrieve_results_from_image_index(query):
""" take a text query as input and return the most similar image from the vector store """
# first tokenize the text query and convert it to a tensor
text = clip.tokenize(query).to(device)
# encode the text tensor using the CLIP model to produce a query embedding
query_embedding = model.encode_text(text).tolist()[0]
# Encode the query using ClinicalBERT for text similarity
clinical_query_embedding = text_embed_model.embed_query(query)
# create a VectorStoreQuery
image_vector_store_query = VectorStoreQuery(
query_embedding=query_embedding,
similarity_top_k=1, # returns 1 image
mode="default",
)
# execute the query against the image vector store
image_retrieval_results = image_vector_store.query(
image_vector_store_query
)
if image_retrieval_results.nodes:
best_score = -1
best_image = None
for node, clip_score in zip(image_retrieval_results.nodes, image_retrieval_results.similarities):
image_path = node.metadata["filepath"]
image_summary = node.metadata.get("summary", "") # Assuming summaries are stored in metadata
# Calculate text similarity between query and image summary
summary_embedding = text_embed_model.embed_query(image_summary)
# text_score = util.cosine_similarity(
# [clinical_query_embedding], [summary_embedding]
# )[0][0]
# Use util.cos_sim for cosine similarity
text_score = util.cos_sim(torch.tensor([clinical_query_embedding]),
torch.tensor([summary_embedding]))[0][0].item()
# Calculate average similarity score
avg_score = (clip_score + text_score) / 2
if avg_score > best_score:
best_score = avg_score
best_image = image_path
return best_image, best_score
return None, 0.0
def plot_image_retrieve_results(image_retrieval_results):
""" Take a list of image retrieval results and create a new figure """
plt.figure(figsize=(16, 5))
img_cnt = 0
# Iterate over the image retrieval results, and for each result, display the corresponding image and its score in a subplot.
# The title of the subplot is the score of the image, formatted to four decimal places.
for returned_image, score in zip(
image_retrieval_results.nodes, image_retrieval_results.similarities
):
img_name = returned_image.text
img_path = returned_image.metadata["filepath"]
# Read image using OpenCV
image = cv2.imread(img_path)
# Convert image to RGB format (OpenCV reads in BGR by default)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
plt.subplot(2, 3, img_cnt + 1)
plt.title("{:.4f}".format(score))
plt.imshow(image_rgb)
plt.xticks([])
plt.yticks([])
img_cnt += 1
plt.tight_layout()
plt.show()
def get_all_images():
image_paths = []
for _, metadata in image_metadata_dict.items():
image_paths.append(metadata["img_path"])
return image_paths
def load_image(image_path):
return Image.open(image_path)
# Define the combined query function
def combined_query(query, similarity_threshold=0.3):
# Text query
text_response = streaming_qe.query(query)
text_result = ""
for text in text_response.response_gen:
text_result += text
# Image query
top_image_path, similarity_score = retrieve_results_from_image_index(query)
if similarity_score >= similarity_threshold:
return text_result, top_image_path, similarity_score
else:
return text_result, None, similarity_score
def gradio_interface(query):
text_result, image_path, similarity_score = combined_query(query)
top_image = load_image(image_path) if image_path else None
all_images = [load_image(path) for path in get_all_images()]
return text_result, top_image, all_images, f"Similarity Score: {similarity_score:.4f}"
with gr.Blocks() as iface:
gr.Markdown("# Medical Knowledge Base Query System")
with gr.Row():
query_input = gr.Textbox(lines=2, placeholder="Enter your medical query here...")
submit_button = gr.Button("Submit")
with gr.Row():
text_output = gr.Textbox(label="Text Response")
image_output = gr.Image(label="Top Related Image (if similarity > threshold)")
similarity_score_output = gr.Textbox(label="Similarity Score")
gallery_output = gr.Gallery(label="All Extracted Images", show_label=True, elem_id="gallery")
submit_button.click(
fn=gradio_interface,
inputs=query_input,
outputs=[text_output, image_output, gallery_output, similarity_score_output]
)
# Load all images on startup
iface.load(lambda: ["", None, [load_image(path) for path in get_all_images()], ""],
outputs=[text_output, image_output, gallery_output, similarity_score_output])
# Launch the Gradio interface
iface.launch(share=True)
# just to check if it works or not
# def image_query(query):
# image_retrieval_results = retrieve_results_from_image_index(query)
# plot_image_retrieve_results(image_retrieval_results)
# query1 = "What is gingivitis?"
# # generate image retrieval results
# image_query(query1)
# # Modify your text query function
# # def text_query(query):
# # text_retrieval_results = process_query(query, text_embed_model, k=10)
# # return text_retrieval_results
# # Function to query the text vector database
# def text_query(query: str, k: int = 10):
# # Create a VectorStoreIndex from the existing vector store
# index = VectorStoreIndex.from_vector_store(text_vector_store)
# # Create a retriever with top-k configuration
# retriever = index.as_retriever(similarity_top_k=k)
# # Create a query engine
# query_engine = RetrieverQueryEngine.from_args(retriever)
# # Execute the query
# response = query_engine.query(query)
# return response
# # text_retrieval_results = text_query(query1)
# streaming_response = streaming_qe.query(
# query1
# )
# streaming_response.print_response_stream()
|