"""A Gradio app for anonymizing text data using FHE.""" import os import re from typing import Dict, List import numpy import gradio as gr import pandas as pd from fhe_anonymizer import FHEAnonymizer from openai import OpenAI from utils_demo import * from concrete.ml.deployment import FHEModelClient ORIGINAL_DOCUMENT = read_txt(ORIGINAL_FILE_PATH).split("\n\n") ANONYMIZED_DOCUMENT = read_txt(ANONYMIZED_FILE_PATH) MAPPING_SENTENCES = read_pickle(MAPPING_SENTENCES_PATH) subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR) time.sleep(3) clean_directory() anonymizer = FHEAnonymizer() client = OpenAI(api_key=os.environ.get("openaikey")) # Generate a random user ID user_id = numpy.random.randint(0, 2**32) print(f"Your user ID is: {user_id}....") def select_static_sentences_fn(selected_sentences: List): selected_sentences = [MAPPING_SENTENCES[sentence] for sentence in selected_sentences] anonymized_selected_sentence = sorted(selected_sentences, key=lambda x: x[0]) anonymized_selected_sentence = [sentence for _, sentence in anonymized_selected_sentence] return {anonymized_doc_box: gr.update(value="\n\n".join(anonymized_selected_sentence))} def key_gen_fn() -> Dict: """Generate keys for a given user. Returns: dict: A dictionary containing the generated keys and related information. """ print("Step 1: Key Generation:") client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") client.load() # Creates the private and evaluation keys on the client side client.generate_private_and_evaluation_keys() # Get the serialized evaluation keys serialized_evaluation_keys = client.get_serialized_evaluation_keys() assert isinstance(serialized_evaluation_keys, bytes) # Save the evaluation key evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" with evaluation_key_path.open("wb") as f: f.write(serialized_evaluation_keys) # anonymizer.generate_key() if not evaluation_key_path.is_file(): error_message = ( f"Error Encountered While generating the evaluation {evaluation_key_path.is_file()=}" ) print(error_message) return {gen_key_btn: gr.update(value=error_message)} else: return {gen_key_btn: gr.update(value="Keys have been generated ✅")} def encrypt_query_fn(query): print(f"Step 2 Query encryption: {query=}") evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {output_encrypted_box: gr.update(value=error_message)} if is_user_query_valid(query): error_msg = ( "Unable to process ❌: The request exceeds the length limit or falls " "outside the scope of this document. Please refine your query." ) print(error_msg) return {query_box: gr.update(value=error_msg)} # Retrieve the client API client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}") client.load() # Pattern to identify words and non-words (including punctuation, spaces, etc.) tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", query) encrypted_tokens = [] for token in tokens: if bool(re.match(r"^\s+$", token)): continue # Directly append non-word tokens or whitespace to processed_tokens # Prediction for each word emb_x = get_batch_text_representation([token], EMBEDDINGS_MODEL, TOKENIZER) encrypted_x = client.quantize_encrypt_serialize(emb_x) assert isinstance(encrypted_x, bytes) encrypted_tokens.append(encrypted_x) write_pickle(KEYS_DIR / f"{user_id}/encrypted_input", encrypted_tokens) #anonymizer.encrypt_query(query) encrypted_quant_tokens_hex = [token.hex()[500:510] for token in encrypted_tokens] return {output_encrypted_box: gr.update(value=" ".join(encrypted_quant_tokens_hex))} def run_fhe_fn(query_box): evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {anonymized_text_output: gr.update(value=error_message)} encryted_query_path = KEYS_DIR / "encrypted_quantized_query" if not encryted_query_path.is_file(): error_message = "Error ❌: Please encrypt your query first!" return {anonymized_text_output: gr.update(value=error_message)} anonymizer.run_server_and_decrypt_output(query_box) anonymized_text = read_pickle(KEYS_DIR / "reconstructed_sentence") # Removing Spaces Before Punctuation: anonymized_text = re.sub(r"\s([,.!?;:])", r"\1", anonymized_text) identified_words_with_prob = read_pickle(KEYS_DIR / "identified_words_with_prob") # Convert the list of identified words and probabilities into a DataFrame if identified_words_with_prob: identified_df = pd.DataFrame( identified_words_with_prob, columns=["Identified Words", "Probability"] ) else: identified_df = pd.DataFrame(columns=["Identified Words", "Probability"]) return anonymized_text, identified_df def query_chatgpt_fn(anonymized_query, anonymized_document): evaluation_key_path = KEYS_DIR / "evaluation_key" if not evaluation_key_path.is_file(): error_message = "Error ❌: Please generate the key first!" return {anonymized_text_output: gr.update(value=error_message)} encryted_query_path = KEYS_DIR / "encrypted_quantized_query" if not encryted_query_path.is_file(): error_message = "Error ❌: Please encrypt your query first!" return {anonymized_text_output: gr.update(value=error_message)} decrypted_query_path = KEYS_DIR / "reconstructed_sentence" if not decrypted_query_path.is_file(): error_message = "Error ❌: Please run the FHE computation first!" return {anonymized_text_output: gr.update(value=error_message)} prompt = read_txt(PROMPT_PATH) # Prepare prompt full_prompt = prompt + "\n" query = ( "Document content:\n```\n" + anonymized_document + "\n\n```" + "Query:\n```\n" + anonymized_query + "\n```" ) print(full_prompt) completion = client.chat.completions.create( model="gpt-4-1106-preview", # Replace with "gpt-4" if available messages=[ {"role": "system", "content": prompt}, {"role": "user", "content": query}, ], ) anonymized_response = completion.choices[0].message.content uuid_map = read_json(MAPPING_UUID_PATH) inverse_uuid_map = { v: k for k, v in uuid_map.items() } # TODO load the inverse mapping from disk for efficiency # Pattern to identify words and non-words (including punctuation, spaces, etc.) tokens = re.findall(r"(\b[\w\.\/\-@]+\b|[\s,.!?;:'\"-]+)", anonymized_response) processed_tokens = [] for token in tokens: # Directly append non-word tokens or whitespace to processed_tokens if not token.strip() or not re.match(r"\w+", token): processed_tokens.append(token) continue if token in inverse_uuid_map: processed_tokens.append(inverse_uuid_map[token]) else: processed_tokens.append(token) deanonymized_response = "".join(processed_tokens) return anonymized_response, deanonymized_response demo = gr.Blocks(css=".markdown-body { font-size: 18px; }") with demo: gr.Markdown( """
Concrete-ML — Documentation — Community — @zama_fhe
""" ) # gr.Markdown( # """ ## #
# """ # ) with gr.Accordion("What is encrypted anonymization?", open=False): gr.Markdown( """ Anonymization is the process of removing personally identifiable information (PII) from data to protect individual privacy. To resolve trust issues when deploying anonymization as a cloud service, Fully Homomorphic Encryption (FHE) can be used to preserve the privacy of the original data using encryption. The data remains encrypted throughout the anonymization process, eliminating the need for third-party access to the raw data. Once the data is anonymized, it can safely be sent to GenAI services such as ChatGPT. """ ) ########################## Key Gen Part ########################## gr.Markdown( "## Step 1: Key generation\n\n" """In FHE schemes, two sets of keys are generated. First, the secret keys which are used for encrypting and decrypting data owned by the client. Second, the evaluation keys that allow a server to blindly process the encrypted data. """ ) gen_key_btn = gr.Button("Generate the secret and evaluation keys") gen_key_btn.click( key_gen_fn, inputs=[], outputs=[gen_key_btn], ) ########################## Main document Part ########################## gr.Markdown("## Step 2: Private document") with gr.Row(): with gr.Column(): gr.Markdown("**Original document:**") gr.Markdown( """This document was retrieved from the [Microsoft Presidio](https://huggingface.co/spaces/presidio/presidio_demo) demo.\n\n You can select and deselect sentences to customize the document that will be used as the initial prompt for ChatGPT in step 5. """ ) with gr.Column(): gr.Markdown("**Anonymized document:**") gr.Markdown( """You can see below the anonymized text, replaced with hexademical strings, that will be sent to ChatGPT. ChatGPT will then be able to answer any queries about the document. """ ) with gr.Row(): with gr.Column(): original_sentences_box = gr.CheckboxGroup( ORIGINAL_DOCUMENT, value=ORIGINAL_DOCUMENT, show_label=False, ) with gr.Column(): anonymized_doc_box = gr.Textbox(show_label=False, value=ANONYMIZED_DOCUMENT, interactive=False, lines=11 ) original_sentences_box.change( fn=select_static_sentences_fn, inputs=[original_sentences_box], outputs=[anonymized_doc_box], ) ########################## User Query Part ########################## gr.Markdown("Encrypt the query locally with FHE
""" ) encrypt_btn = gr.Button("Encrypt query”") gr.HTML("") with gr.Column(scale=5): output_encrypted_box = gr.Textbox( label="Encrypted anonymized query that will be sent to the anonymization server:", lines=8 ) encrypt_btn.click( fn=encrypt_query_fn, inputs=[query_box], outputs=[query_box, output_encrypted_box] ) ########################## FHE processing Part ########################## gr.Markdown("