Spaces:
Running
on
T4
Running
on
T4
File size: 26,600 Bytes
5238467 20a0fad 5238467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from dataclasses import dataclass
from functools import partial
import logging
import math
import typing as tp
import torch
from torch import nn
from ..utils import utils
from ..modules.streaming import StreamingModule, State
from ..modules.transformer import StreamingTransformer, create_norm_fn
from ..modules.conditioners import (
ConditionFuser,
ClassifierFreeGuidanceDropout,
AttributeDropout,
ConditioningProvider,
ConditioningAttributes,
ConditionType,
)
from ..modules.codebooks_patterns import CodebooksPatternProvider
from ..modules.activations import get_activation_fn
logger = logging.getLogger(__name__)
ConditionTensors = tp.Dict[str, ConditionType]
CFGConditions = tp.Union[ConditionTensors, tp.Tuple[ConditionTensors, ConditionTensors]]
def get_init_fn(method: str, input_dim: int, init_depth: tp.Optional[int] = None):
"""LM layer initialization.
Inspired from xlformers: https://github.com/fairinternal/xlformers
Args:
method (str): Method name for init function. Valid options are:
'gaussian', 'uniform'.
input_dim (int): Input dimension of the initialized module.
init_depth (Optional[int]): Optional init depth value used to rescale
the standard deviation if defined.
"""
# Compute std
std = 1 / math.sqrt(input_dim)
# Rescale with depth
if init_depth is not None:
std = std / math.sqrt(2 * init_depth)
if method == 'gaussian':
return partial(
torch.nn.init.trunc_normal_, mean=0.0, std=std, a=-3 * std, b=3 * std
)
elif method == 'uniform':
bound = math.sqrt(3) * std # ensure the standard deviation is `std`
return partial(torch.nn.init.uniform_, a=-bound, b=bound)
else:
raise ValueError("Unsupported layer initialization method")
def init_layer(m: nn.Module,
method: str,
init_depth: tp.Optional[int] = None,
zero_bias_init: bool = False):
"""Wrapper around ``get_init_fn`` for proper initialization of LM modules.
Args:
m (nn.Module): Module to initialize.
method (str): Method name for the init function.
init_depth (Optional[int]): Optional init depth value used to rescale
the standard deviation if defined.
zero_bias_init (bool): Whether to initialize the bias to 0 or not.
"""
if isinstance(m, nn.Linear):
init_fn = get_init_fn(method, m.in_features, init_depth=init_depth)
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
weight = m.weight.float()
init_fn(weight)
m.weight.data[:] = weight.half()
else:
init_fn(m.weight)
if zero_bias_init and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Embedding):
init_fn = get_init_fn(method, m.embedding_dim, init_depth=None)
if m.weight.device.type == 'cpu' and m.weight.dtype == torch.float16:
weight = m.weight.float()
init_fn(weight)
m.weight.data[:] = weight.half()
else:
init_fn(m.weight)
class ScaledEmbedding(nn.Embedding):
"""Boost learning rate for embeddings (with `scale`).
"""
def __init__(self, *args, lr=None, **kwargs):
super().__init__(*args, **kwargs)
self.lr = lr
def make_optim_group(self):
group = {"params": list(self.parameters())}
if self.lr is not None:
group["lr"] = self.lr
return group
@dataclass
class LMOutput:
# The logits are already re-aligned with the input codes
# hence no extra shift is required, e.g. when computing CE
logits: torch.Tensor # [B, K, T, card]
mask: torch.Tensor # [B, K, T]
class LMModel(StreamingModule):
"""Transformer-based language model on multiple streams of codes.
Args:
pattern_provider (CodebooksPatternProvider): Pattern provider for codebook interleaving.
condition_provider (MusicConditioningProvider): Conditioning provider from metadata.
fuser (ConditionFuser): Fuser handling the fusing of conditions with language model input.
n_q (int): Number of parallel streams to model.
card (int): Cardinality, vocabulary size.
dim (int): Dimension of the transformer encoder.
num_heads (int): Number of heads for the transformer encoder.
hidden_scale (int): Scale for hidden feed forward dimension of the transformer encoder.
norm (str): Normalization method.
norm_first (bool): Use pre-norm instead of post-norm.
emb_lr (Optional[float]): Embedding-specific learning rate.
bias_proj (bool): Use bias for output projections.
weight_init (Optional[str]): Method for weight initialization.
depthwise_init (Optional[str]): Method for depthwise weight initialization.
zero_bias_init (bool): If true and bias in Linears, initialize bias to zeros.
cfg_dropout (float): Classifier-free guidance dropout.
cfg_coef (float): Classifier-free guidance coefficient.
attribute_dropout (dict): Attribute dropout probabilities.
two_step_cfg (bool): Whether to run classifier free-guidance with 2 distinct steps.
**kwargs: Additional parameters for the transformer encoder.
"""
def __init__(self, pattern_provider: CodebooksPatternProvider, condition_provider: ConditioningProvider,
fuser: ConditionFuser, n_q: int = 8, card: int = 1024, dim: int = 128, num_heads: int = 8,
hidden_scale: int = 4, norm: str = 'layer_norm', norm_first: bool = False,
emb_lr: tp.Optional[float] = None, bias_proj: bool = True,
weight_init: tp.Optional[str] = None, depthwise_init: tp.Optional[str] = None,
zero_bias_init: bool = False, cfg_dropout: float = 0, cfg_coef: float = 1.0,
attribute_dropout: tp.Dict[str, tp.Dict[str, float]] = {}, two_step_cfg: bool = False,
**kwargs):
super().__init__()
self.cfg_coef = cfg_coef
self.cfg_dropout = ClassifierFreeGuidanceDropout(p=cfg_dropout)
self.att_dropout = AttributeDropout(p=attribute_dropout)
self.condition_provider = condition_provider
self.fuser = fuser
self.card = card
embed_dim = self.card + 1
self.n_q = n_q
self.dim = dim
self.pattern_provider = pattern_provider
self.two_step_cfg = two_step_cfg
self.emb = nn.ModuleList([ScaledEmbedding(embed_dim, dim, lr=emb_lr) for _ in range(n_q)])
if 'activation' in kwargs:
kwargs['activation'] = get_activation_fn(kwargs['activation'])
self.transformer = StreamingTransformer(
d_model=dim, num_heads=num_heads, dim_feedforward=int(hidden_scale * dim),
norm=norm, norm_first=norm_first, **kwargs)
self.out_norm: tp.Optional[nn.Module] = None
if norm_first:
self.out_norm = create_norm_fn(norm, dim)
self.linears = nn.ModuleList([nn.Linear(dim, self.card, bias=bias_proj) for _ in range(n_q)])
self._init_weights(weight_init, depthwise_init, zero_bias_init)
self._fsdp: tp.Optional[nn.Module]
self.__dict__['_fsdp'] = None
def _init_weights(self, weight_init: tp.Optional[str], depthwise_init: tp.Optional[str], zero_bias_init: bool):
"""Initialization of the transformer module weights.
Args:
weight_init (Optional[str]): Weight initialization strategy. See ``get_init_fn`` for valid options.
depthwise_init (Optional[str]): Depwthwise initialization strategy. The following options are valid:
'current' where the depth corresponds to the current layer index or 'global' where the total number
of layer is used as depth. If not set, no depthwise initialization strategy is used.
zero_bias_init (bool): Whether to initalize bias to zero or not.
"""
assert depthwise_init is None or depthwise_init in ['current', 'global']
assert depthwise_init is None or weight_init is not None, \
"If 'depthwise_init' is defined, a 'weight_init' method should be provided."
assert not zero_bias_init or weight_init is not None, \
"If 'zero_bias_init', a 'weight_init' method should be provided"
if weight_init is None:
return
for emb_layer in self.emb:
init_layer(emb_layer, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
for layer_idx, tr_layer in enumerate(self.transformer.layers):
depth = None
if depthwise_init == 'current':
depth = layer_idx + 1
elif depthwise_init == 'global':
depth = len(self.transformer.layers)
init_fn = partial(init_layer, method=weight_init, init_depth=depth, zero_bias_init=zero_bias_init)
tr_layer.apply(init_fn)
for linear in self.linears:
init_layer(linear, method=weight_init, init_depth=None, zero_bias_init=zero_bias_init)
@property
def special_token_id(self) -> int:
return self.card
@property
def num_codebooks(self) -> int:
return self.n_q
def forward(self, sequence: torch.Tensor,
conditions: tp.List[ConditioningAttributes],
condition_tensors: tp.Optional[ConditionTensors] = None) -> torch.Tensor:
"""Apply language model on sequence and conditions.
Given a tensor of sequence of shape [B, K, S] with K the number of codebooks and
S the sequence steps, return the logits with shape [B, card, K, S].
Args:
indices (torch.Tensor): indices of the codes to model.
conditions (list[ConditioningAttributes]): conditionings to use when modeling
the given codes. Note that when evaluating multiple time with the same conditioning
you should pre-compute those and pass them as `condition_tensors`.
condition_tensors (dict[str, ConditionType] or None): pre-computed conditioning
tensors, see `conditions`.
Returns:
torch.Tensor: Logits.
"""
B, K, S = sequence.shape
assert K == self.num_codebooks, 'Sequence shape must match the specified number of codebooks'
input_ = sum([self.emb[k](sequence[:, k]) for k in range(K)])
if condition_tensors is None:
assert not self._is_streaming, "Conditions tensors should be precomputed when streaming."
# apply dropout modules
conditions = self.cfg_dropout(conditions)
conditions = self.att_dropout(conditions)
tokenized = self.condition_provider.tokenize(conditions)
# encode conditions and fuse, both have a streaming cache to not recompute when generating.
condition_tensors = self.condition_provider(tokenized)
else:
assert not conditions, "Shouldn't pass both conditions and condition_tensors."
input_, cross_attention_input = self.fuser(input_, condition_tensors)
out = self.transformer(input_, cross_attention_src=cross_attention_input)
if self.out_norm:
out = self.out_norm(out)
logits = torch.stack([self.linears[k](out) for k in range(K)], dim=1) # [B, K, S, card]
# remove the prefix from the model outputs
if len(self.fuser.fuse2cond['prepend']) > 0:
logits = logits[:, :, -S:]
return logits # [B, K, S, card]
def compute_predictions(
self, codes: torch.Tensor,
conditions: tp.List[ConditioningAttributes],
condition_tensors: tp.Optional[ConditionTensors] = None) -> LMOutput:
"""Given an input tensor of codes [B, K, T] and list of conditions, runs the model
forward using the specified codes interleaving pattern.
Args:
codes (torch.Tensor): Input codes of shape [B, K, T] with B the batch size,
K the number of codebooks and T the number of timesteps.
conditions (list[ConditioningAttributes]): conditionings to use when modeling
the given codes. Note that when evaluating multiple time with the same conditioning
you should pre-compute those and pass them as `condition_tensors`.
condition_tensors (dict[str, ConditionType] or None): pre-computed conditioning
tensors, see `conditions`.
Returns:
LMOutput: Language model outputs
logits (torch.Tensor) of shape [B, K, T, card] corresponding to the provided codes,
i.e. the first item corresponds to logits to predict the first code, meaning that
no additional shifting of codes and logits is required.
mask (torch.Tensor) of shape [B, K, T], mask over valid and invalid positions.
Given the specified interleaving strategies, parts of the logits and codes should
not be considered as valid predictions because of invalid context.
"""
B, K, T = codes.shape
codes = codes.contiguous()
# map codes [B, K, T] into pattern sequence [B, K, S] using special_token_id for masked tokens
pattern = self.pattern_provider.get_pattern(T)
sequence_codes, sequence_indexes, sequence_mask = pattern.build_pattern_sequence(
codes, self.special_token_id, keep_only_valid_steps=True
)
# apply model on pattern sequence
model = self if self._fsdp is None else self._fsdp
logits = model(sequence_codes, conditions, condition_tensors) # [B, K, S, card]
# map back the logits on pattern sequence to logits on original codes: [B, K, S, card] -> [B, K, T, card]
# and provide the corresponding mask over invalid positions of tokens
logits = logits.permute(0, 3, 1, 2) # [B, card, K, S]
# note: we use nans as special token to make it obvious if we feed unexpected logits
logits, logits_indexes, logits_mask = pattern.revert_pattern_logits(
logits, float('nan'), keep_only_valid_steps=True
)
logits = logits.permute(0, 2, 3, 1) # [B, K, T, card]
logits_mask = logits_mask[None, :, :].expand(B, -1, -1) # [K, T] -> [B, K, T]
return LMOutput(logits, logits_mask)
def _sample_next_token(self,
sequence: torch.Tensor,
cfg_conditions: CFGConditions,
unconditional_state: State,
use_sampling: bool = False,
temp: float = 1.0,
top_k: int = 0,
top_p: float = 0.0,
cfg_coef: tp.Optional[float] = None) -> torch.Tensor:
"""Sample next token from the model given a sequence and a set of conditions. The model supports
multiple sampling strategies (greedy sampling, softmax, top-k, top-p...).
Args:
sequence (torch.Tensor): Current sequence of shape [B, K, S]
with K corresponding to the number of codebooks and S the number of sequence steps.
S = 1 in streaming mode, except for the first step that contains a bigger prompt.
condition_tensors (Dict[str, ConditionType): Set of conditions. If CFG is used,
should be twice the batch size, being the concatenation of the conditions + null conditions.
use_sampling (bool): Whether to use a sampling strategy or not.
temp (float): Sampling temperature.
top_k (int): K for "top-k" sampling.
top_p (float): P for "top-p" sampling.
cfg_coef (float): classifier free guidance coefficient
Returns:
next_token (torch.Tensor): Next token tensor of shape [B, K, 1].
"""
B = sequence.shape[0]
cfg_coef = self.cfg_coef if cfg_coef is None else cfg_coef
model = self if self._fsdp is None else self._fsdp
if self.two_step_cfg and cfg_conditions != {}:
assert isinstance(cfg_conditions, tuple)
condition_tensors, null_condition_tensors = cfg_conditions
cond_logits = model(sequence, conditions=[], condition_tensors=condition_tensors)
state = self.get_streaming_state()
self.set_streaming_state(unconditional_state)
uncond_logits = model(sequence, conditions=[], condition_tensors=null_condition_tensors)
unconditional_state.update(self.get_streaming_state())
self.set_streaming_state(state)
logits = uncond_logits + (cond_logits - uncond_logits) * self.cfg_coef
else:
assert isinstance(cfg_conditions, dict)
condition_tensors = cfg_conditions
if condition_tensors:
# Preparing for CFG, predicting both conditional and unconditional logits.
sequence = torch.cat([sequence, sequence], dim=0)
all_logits = model(
sequence,
conditions=[], condition_tensors=condition_tensors)
if condition_tensors:
cond_logits, uncond_logits = all_logits.split(B, dim=0) # [B, K, T, card]
logits = uncond_logits + (cond_logits - uncond_logits) * cfg_coef
else:
logits = all_logits
logits = logits.permute(0, 1, 3, 2) # [B, K, card, T]
logits = logits[..., -1] # [B x K x card]
# Apply softmax for sampling if temp > 0. Else, do greedy sampling to avoid zero division error.
if use_sampling and temp > 0.0:
probs = torch.softmax(logits / temp, dim=-1)
if top_p > 0.0:
next_token = utils.sample_top_p(probs, p=top_p)
elif top_k > 0:
next_token = utils.sample_top_k(probs, k=top_k)
else:
next_token = utils.multinomial(probs, num_samples=1)
else:
next_token = torch.argmax(logits, dim=-1, keepdim=True)
return next_token
@torch.no_grad()
def generate(self,
prompt: tp.Optional[torch.Tensor] = None,
conditions: tp.List[ConditioningAttributes] = [],
num_samples: tp.Optional[int] = None,
max_gen_len: int = 256,
use_sampling: bool = True,
temp: float = 1.0,
top_k: int = 250,
top_p: float = 0.0,
cfg_coef: tp.Optional[float] = None,
two_step_cfg: bool = False,
remove_prompts: bool = False,
check: bool = False,
callback: tp.Optional[tp.Callable[[int, int], None]] = None) -> torch.Tensor:
"""Generate tokens sampling from the model given a prompt or unconditionally. Generation can
be perform in a greedy fashion or using sampling with top K and top P strategies.
Args:
prompt (Optional[torch.Tensor]): Prompt tokens of shape [B, K, T].
conditions_tensors (Dict[str, torch.Tensor]): Set of conditions or None.
num_samples (int or None): Number of samples to generate when no prompt and no conditions are given.
max_gen_len (int): Maximum generation length.
use_sampling (bool): Whether to use a sampling strategy or not.
temp (float): Sampling temperature.
top_k (int): K for "top-k" sampling.
top_p (float): P for "top-p" sampling.
remove_prompts (bool): Whether to remove prompts from generation or not.
Returns:
torch.Tensor: Generated tokens.
"""
assert not self.training, "generation shouldn't be used in training mode."
first_param = next(iter(self.parameters()))
device = first_param.device
# Checking all input shapes are consistents.
possible_num_samples = []
if num_samples is not None:
possible_num_samples.append(num_samples)
elif prompt is not None:
possible_num_samples.append(prompt.shape[0])
elif conditions:
possible_num_samples.append(len(conditions))
else:
possible_num_samples.append(1)
assert [x == possible_num_samples[0] for x in possible_num_samples], "Inconsitent inputs shapes"
num_samples = possible_num_samples[0]
# below we create set of conditions: one conditional and one unconditional
# to do that we merge the regular condition together with the null condition
# we then do 1 forward pass instead of 2.
# the reason for that is two-fold:
# 1. it is about x2 faster than doing 2 forward passes
# 2. avoid the streaming API treating the 2 passes as part of different time steps
# We also support doing two different passes, in particular to ensure that
# the padding structure is exactly the same between train anf test.
# With a batch size of 1, this can be slower though.
cfg_conditions: CFGConditions
two_step_cfg = self.two_step_cfg if two_step_cfg is None else two_step_cfg
if conditions:
null_conditions = ClassifierFreeGuidanceDropout(p=1.0)(conditions)
if two_step_cfg:
cfg_conditions = (
self.condition_provider(self.condition_provider.tokenize(conditions)),
self.condition_provider(self.condition_provider.tokenize(null_conditions)),
)
else:
conditions = conditions + null_conditions
tokenized = self.condition_provider.tokenize(conditions)
cfg_conditions = self.condition_provider(tokenized)
else:
cfg_conditions = {}
if prompt is None:
assert num_samples > 0
prompt = torch.zeros((num_samples, self.num_codebooks, 0), dtype=torch.long, device=device)
B, K, T = prompt.shape
start_offset = T
assert start_offset < max_gen_len
pattern = self.pattern_provider.get_pattern(max_gen_len)
# this token is used as default value for codes that are not generated yet
unknown_token = -1
# we generate codes up to the max_gen_len that will be mapped to the pattern sequence
gen_codes = torch.full((B, K, max_gen_len), unknown_token, dtype=torch.long, device=device)
# filling the gen_codes with the prompt if needed
gen_codes[..., :start_offset] = prompt
# create the gen_sequence with proper interleaving from the pattern: [B, K, S]
gen_sequence, indexes, mask = pattern.build_pattern_sequence(gen_codes, self.special_token_id)
# retrieve the start_offset in the sequence:
# it is the first sequence step that contains the `start_offset` timestep
start_offset_sequence = pattern.get_first_step_with_timesteps(start_offset)
assert start_offset_sequence is not None
with self.streaming():
unconditional_state = self.get_streaming_state()
prev_offset = 0
gen_sequence_len = gen_sequence.shape[-1] # gen_sequence shape is [B, K, S]
for offset in range(start_offset_sequence, gen_sequence_len):
# get current sequence (note that the streaming API is providing the caching over previous offsets)
curr_sequence = gen_sequence[..., prev_offset:offset]
curr_mask = mask[None, ..., prev_offset:offset].expand(B, -1, -1)
if check:
# check coherence between mask and sequence
assert (curr_sequence == torch.where(curr_mask, curr_sequence, self.special_token_id)).all()
# should never happen as gen_sequence is filled progressively
assert not (curr_sequence == unknown_token).any()
# sample next token from the model, next token shape is [B, K, 1]
next_token = self._sample_next_token(
curr_sequence, cfg_conditions, unconditional_state, use_sampling, temp, top_k, top_p,
cfg_coef=cfg_coef)
# ensure the tokens that should be masked are properly set to special_token_id
# as the model never output special_token_id
valid_mask = mask[..., offset:offset+1].expand(B, -1, -1)
next_token[~valid_mask] = self.special_token_id
# ensure we don't overwrite prompt tokens, we only write over unknown tokens
# (then mask tokens should be left as is as well, which is correct)
gen_sequence[..., offset:offset+1] = torch.where(
gen_sequence[..., offset:offset+1] == unknown_token,
next_token, gen_sequence[..., offset:offset+1]
)
prev_offset = offset
if callback is not None:
callback(1 + offset - start_offset_sequence, gen_sequence_len - start_offset_sequence)
unconditional_state.clear()
# ensure sequence has been entirely filled
assert not (gen_sequence == unknown_token).any()
# ensure gen_sequence pattern and mask are matching
# which means the gen_sequence is valid according to the pattern
assert (
gen_sequence == torch.where(mask[None, ...].expand(B, -1, -1), gen_sequence, self.special_token_id)
).all()
# get back the codes, trimming the prompt if needed and cutting potentially incomplete timesteps
out_codes, out_indexes, out_mask = pattern.revert_pattern_sequence(gen_sequence, special_token=unknown_token)
# sanity checks over the returned codes and corresponding masks
assert (out_codes[..., :max_gen_len] != unknown_token).all()
assert (out_mask[..., :max_gen_len] == 1).all()
out_start_offset = start_offset if remove_prompts else 0
out_codes = out_codes[..., out_start_offset:max_gen_len]
# ensure the returned codes are all valid
assert (out_codes >= 0).all() and (out_codes <= self.card).all()
return out_codes
|