Spaces:
Running
on
T4
Running
on
T4
File size: 25,607 Bytes
5238467 1897b6f 8e10a53 5238467 925b7f8 59cc4f3 790c9e0 efabdc6 790c9e0 efabdc6 9138f15 1897b6f 790c9e0 1a6de5e 14af4d8 aef7fad 1028cad 1897b6f 5238467 595ae94 1a6de5e 595ae94 a8a94b6 59cc4f3 7ec97f3 5238467 1a6de5e efabdc6 790c9e0 d758673 efabdc6 5238467 de8ae12 5238467 de8ae12 5238467 a8a94b6 1028cad 59cc4f3 a8a94b6 a549dc4 fef074d a8a94b6 1028cad a8a94b6 1028cad a8a94b6 1028cad fef074d a8a94b6 1028cad a8a94b6 ee1911a 74894bc 1028cad 74894bc 1028cad 1a6de5e 5238467 de8ae12 4f37585 5238467 e3f64dd 1a6de5e e3f64dd 1dda6b6 e3f64dd 5238467 e3f64dd 1028cad e3f64dd eef4b32 e3f64dd 14af4d8 e3f64dd eef4b32 e3f64dd 50d48cc e3f64dd 5238467 1a6de5e 14af4d8 e3f64dd cca6d10 d7ef5a5 cca6d10 790c9e0 cca6d10 790c9e0 cca6d10 e3f64dd 14af4d8 e83dc6d 14af4d8 1a6de5e a8a94b6 74894bc a8a94b6 23fe483 1028cad 1a6de5e de8ae12 1028cad 5238467 de8ae12 1028cad de8ae12 d758673 59cc4f3 de8ae12 0ffc43b de8ae12 bedb522 0ffc43b bedb522 fef074d de8ae12 bedb522 de8ae12 5238467 de8ae12 d758673 505e571 fef074d de8ae12 d758673 de8ae12 d758673 feb9b54 d758673 1028cad cca6d10 1028cad cca6d10 1028cad 59cc4f3 de8ae12 1028cad de8ae12 d758673 feb9b54 a8a94b6 1028cad de8ae12 9766876 de8ae12 d758673 de8ae12 9766876 de8ae12 d758673 de8ae12 9766876 de8ae12 d758673 de8ae12 9766876 de8ae12 d758673 de8ae12 9766876 de8ae12 d758673 de8ae12 595ae94 d758673 de8ae12 59cc4f3 de8ae12 adf74d8 de8ae12 a8a94b6 de8ae12 7ec97f3 de8ae12 595ae94 20a0fad de8ae12 8e10a53 de8ae12 20a0fad de8ae12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
from tempfile import NamedTemporaryFile
import argparse
import torch
import gradio as gr
import os
import subprocess
import sys
from pathlib import Path
import time
import typing as tp
import warnings
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
from audiocraft.data.audio_utils import apply_fade, apply_tafade, apply_splice_effect
from audiocraft.utils.extend import generate_music_segments, add_settings_to_image, INTERRUPTING
import numpy as np
import random
#from pathlib import Path
#from typing import List, Union
import librosa
MODEL = None
MODELS = None
IS_SHARED_SPACE = "Surn/UnlimitedMusicGen" in os.environ.get('SPACE_ID', '')
INTERRUPTED = False
UNLOAD_MODEL = False
MOVE_TO_CPU = False
MAX_PROMPT_INDEX = 0
git = os.environ.get('GIT', "git")
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128"
def interrupt_callback():
return INTERRUPTED
def interrupt():
global INTERRUPTING
INTERRUPTING = True
class FileCleaner:
def __init__(self, file_lifetime: float = 3600):
self.file_lifetime = file_lifetime
self.files = []
def add(self, path: tp.Union[str, Path]):
self._cleanup()
self.files.append((time.time(), Path(path)))
def _cleanup(self):
now = time.time()
for time_added, path in list(self.files):
if now - time_added > self.file_lifetime:
if path.exists():
path.unlink()
self.files.pop(0)
else:
break
#file_cleaner = FileCleaner()
def toggle_audio_src(choice):
if choice == "mic":
return gr.update(source="microphone", value=None, label="Microphone")
else:
return gr.update(source="upload", value=None, label="File")
def make_waveform(*args, **kwargs):
# Further remove some warnings.
be = time.time()
with warnings.catch_warnings():
warnings.simplefilter('ignore')
out = gr.make_waveform(*args, **kwargs)
print("Make a video took", time.time() - be)
return out
def load_model(version):
global MODEL, MODELS, UNLOAD_MODEL
print("Loading model", version)
if MODELS is None:
return MusicGen.get_pretrained(version)
else:
t1 = time.monotonic()
if MODEL is not None:
MODEL.to('cpu') # move to cache
print("Previous model moved to CPU in %.2fs" % (time.monotonic() - t1))
t1 = time.monotonic()
if MODELS.get(version) is None:
print("Loading model %s from disk" % version)
result = MusicGen.get_pretrained(version)
MODELS[version] = result
print("Model loaded in %.2fs" % (time.monotonic() - t1))
return result
result = MODELS[version].to('cuda')
print("Cached model loaded in %.2fs" % (time.monotonic() - t1))
return result
def get_filename(file):
# extract filename from file object
filename = None
if file is not None:
filename = file.name
return filename
def get_filename_from_filepath(filepath):
file_name = os.path.basename(filepath)
file_base, file_extension = os.path.splitext(file_name)
return file_base, file_extension
def get_melody(melody_filepath):
audio_data= list(librosa.load(melody_filepath, sr=None))
audio_data[0], audio_data[1] = audio_data[1], audio_data[0]
melody = tuple(audio_data)
return melody
def commit_hash():
try:
return subprocess.check_output([git, "rev-parse", "HEAD"], shell=False, encoding='utf8').strip()
except Exception:
return "<none>"
def git_tag():
try:
return subprocess.check_output([git, "describe", "--tags"], shell=False, encoding='utf8').strip()
except Exception:
try:
from pathlib import Path
changelog_md = Path(__file__).parent.parent / "CHANGELOG.md"
with changelog_md.open(encoding="utf-8") as file:
return next((line.strip() for line in file if line.strip()), "<none>")
except Exception:
return "<none>"
def versions_html():
import torch
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
commit = commit_hash()
#tag = git_tag()
import xformers
xformers_version = xformers.__version__
return f"""
version: <a href="https://github.com/Oncorporation/audiocraft/commit/{"huggingface" if commit == "<none>" else commit}" target="_blank">{"huggingface" if commit == "<none>" else commit}</a>
 • 
python: <span title="{sys.version}">{python_version}</span>
 • 
torch: {getattr(torch, '__long_version__',torch.__version__)}
 • 
xformers: {xformers_version}
 • 
gradio: {gr.__version__}
"""
def load_melody_filepath(melody_filepath, title):
# get melody filename
#$Union[str, os.PathLike]
symbols = ['_', '.', '-']
if (melody_filepath is None) or (melody_filepath == ""):
return title, gr.update(maximum=0, value=0) , gr.update(value="melody-large", interactive=True)
if (title is None) or ("MusicGen" in title) or (title == ""):
melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
# fix melody name for symbols
for symbol in symbols:
melody_name = melody_name.replace(symbol, ' ').title()
else:
melody_name = title
print(f"Melody name: {melody_name}, Melody Filepath: {melody_filepath}\n")
# get melody length in number of segments and modify the UI
melody = get_melody(melody_filepath)
sr, melody_data = melody[0], melody[1]
segment_samples = sr * 30
total_melodys = max(min((len(melody_data) // segment_samples), 25), 0)
print(f"Melody length: {len(melody_data)}, Melody segments: {total_melodys}\n")
MAX_PROMPT_INDEX = total_melodys
return gr.Textbox.update(value=melody_name), gr.update(maximum=MAX_PROMPT_INDEX, value=0), gr.update(value="melody-large", interactive=True)
def predict(model, text, melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap=1, prompt_index = 0, include_title = True, include_settings = True, harmony_only = False):
global MODEL, INTERRUPTED, INTERRUPTING, MOVE_TO_CPU
output_segments = None
melody_name = "Not Used"
melody = None
if melody_filepath:
melody_name, melody_extension = get_filename_from_filepath(melody_filepath)
melody = get_melody(melody_filepath)
INTERRUPTED = False
INTERRUPTING = False
if temperature < 0:
raise gr.Error("Temperature must be >= 0.")
if topk < 0:
raise gr.Error("Topk must be non-negative.")
if topp < 0:
raise gr.Error("Topp must be non-negative.")
if MODEL is None or MODEL.name != model:
MODEL = load_model(model)
else:
if MOVE_TO_CPU:
MODEL.to('cuda')
# prevent hacking
duration = min(duration, 720)
overlap = min(overlap, 15)
#
output = None
segment_duration = duration
initial_duration = duration
output_segments = []
while duration > 0:
if not output_segments: # first pass of long or short song
if segment_duration > MODEL.lm.cfg.dataset.segment_duration:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
else:
segment_duration = duration
else: # next pass of long song
if duration + overlap < MODEL.lm.cfg.dataset.segment_duration:
segment_duration = duration + overlap
else:
segment_duration = MODEL.lm.cfg.dataset.segment_duration
# implement seed
if seed < 0:
seed = random.randint(0, 0xffff_ffff_ffff)
torch.manual_seed(seed)
print(f'Segment duration: {segment_duration}, duration: {duration}, overlap: {overlap}')
MODEL.set_generation_params(
use_sampling=True,
top_k=topk,
top_p=topp,
temperature=temperature,
cfg_coef=cfg_coef,
duration=segment_duration,
two_step_cfg=False,
rep_penalty=0.5
)
if melody:
# todo return excess duration, load next model and continue in loop structure building up output_segments
if duration > MODEL.lm.cfg.dataset.segment_duration:
output_segments, duration = generate_music_segments(text, melody, seed, MODEL, duration, overlap, MODEL.lm.cfg.dataset.segment_duration, prompt_index, harmony_only=False)
else:
# pure original code
sr, melody = melody[0], torch.from_numpy(melody[1]).to(MODEL.device).float().t().unsqueeze(0)
print(melody.shape)
if melody.dim() == 2:
melody = melody[None]
melody = melody[..., :int(sr * MODEL.lm.cfg.dataset.segment_duration)]
output = MODEL.generate_with_chroma(
descriptions=[text],
melody_wavs=melody,
melody_sample_rate=sr,
progress=False
)
# All output_segments are populated, so we can break the loop or set duration to 0
break
else:
#output = MODEL.generate(descriptions=[text], progress=False)
if not output_segments:
next_segment = MODEL.generate(descriptions=[text], progress=False)
duration -= segment_duration
else:
last_chunk = output_segments[-1][:, :, -overlap*MODEL.sample_rate:]
next_segment = MODEL.generate_continuation(last_chunk, MODEL.sample_rate, descriptions=[text], progress=False)
duration -= segment_duration - overlap
output_segments.append(next_segment)
if INTERRUPTING:
INTERRUPTED = True
INTERRUPTING = False
print("Function execution interrupted!")
raise gr.Error("Interrupted.")
if output_segments:
try:
# Combine the output segments into one long audio file or stack tracks
#output_segments = [segment.detach().cpu().float()[0] for segment in output_segments]
#output = torch.cat(output_segments, dim=dimension)
output = output_segments[0]
for i in range(1, len(output_segments)):
if overlap > 0:
overlap_samples = overlap * MODEL.sample_rate
#stack tracks and fade out/in
overlapping_output_fadeout = output[:, :, -overlap_samples:]
#overlapping_output_fadeout = apply_fade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True, curve_end=0.0, current_device=MODEL.device)
overlapping_output_fadeout = apply_tafade(overlapping_output_fadeout,sample_rate=MODEL.sample_rate,duration=overlap,out=True,start=True,shape="linear")
overlapping_output_fadein = output_segments[i][:, :, :overlap_samples]
#overlapping_output_fadein = apply_fade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, curve_start=0.0, current_device=MODEL.device)
overlapping_output_fadein = apply_tafade(overlapping_output_fadein,sample_rate=MODEL.sample_rate,duration=overlap,out=False,start=False, shape="linear")
overlapping_output = torch.cat([overlapping_output_fadeout[:, :, :-(overlap_samples // 2)], overlapping_output_fadein],dim=2)
###overlapping_output, overlap_sample_rate = apply_splice_effect(overlapping_output_fadeout, MODEL.sample_rate, overlapping_output_fadein, MODEL.sample_rate, overlap)
print(f" overlap size Fade:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
##overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=1) #stack tracks
##print(f" overlap size stack:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
#overlapping_output = torch.cat([output[:, :, -overlap_samples:], output_segments[i][:, :, :overlap_samples]], dim=2) #stack tracks
#print(f" overlap size cat:{overlapping_output.size()}\n output: {output.size()}\n segment: {output_segments[i].size()}")
output = torch.cat([output[:, :, :-overlap_samples], overlapping_output, output_segments[i][:, :, overlap_samples:]], dim=dimension)
else:
output = torch.cat([output, output_segments[i]], dim=dimension)
output = output.detach().cpu().float()[0]
except Exception as e:
print(f"Error combining segments: {e}. Using the first segment only.")
output = output_segments[0].detach().cpu().float()[0]
else:
output = output.detach().cpu().float()[0]
with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file:
video_description = f"{text}\n Duration: {str(initial_duration)} Dimension: {dimension}\n Top-k:{topk} Top-p:{topp}\n Randomness:{temperature}\n cfg:{cfg_coef} overlap: {overlap}\n Seed: {seed}\n Model: {model}\n Melody Condition:{melody_name}\n Sample Segment: {prompt_index}"
if include_settings or include_title:
background = add_settings_to_image(title if include_title else "", video_description if include_settings else "", background_path=background, font=settings_font, font_color=settings_font_color)
audio_write(
file.name, output, MODEL.sample_rate, strategy="loudness",
loudness_headroom_db=18, loudness_compressor=True, add_suffix=False, channels=2)
waveform_video = make_waveform(file.name,bg_image=background, bar_count=45)
if MOVE_TO_CPU:
MODEL.to('cpu')
if UNLOAD_MODEL:
MODEL = None
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
return waveform_video, file.name, seed
def ui(**kwargs):
css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
#btn-generate {background-image:linear-gradient(to right bottom, rgb(157, 255, 157), rgb(229, 255, 235));}
#btn-generate:hover {background-image:linear-gradient(to right bottom, rgb(229, 255, 229), rgb(255, 255, 255));}
#btn-generate:active {background-image:linear-gradient(to right bottom, rgb(229, 255, 235), rgb(157, 255, 157));}
#versions {margin-top: 1em; width:100%; text-align:center;}
.small-btn {max-width:75px;}
"""
with gr.Blocks(title="UnlimitedMusicGen", css=css) as demo:
gr.Markdown(
"""
# UnlimitedMusicGen
This is your private demo for [UnlimitedMusicGen](https://github.com/Oncorporation/audiocraft), a simple and controllable model for music generation
presented at: ["Simple and Controllable Music Generation"](https://huggingface.co/papers/2306.05284)
Disclaimer: This won't run on CPU only. Clone this App and run on GPU instance!
Todo: Working on improved Interrupt and new Models.
"""
)
if IS_SHARED_SPACE and not torch.cuda.is_available():
gr.Markdown("""
⚠ This Space doesn't work in this shared UI ⚠
<a href="https://huggingface.co/spaces/musicgen/MusicGen?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
to use it privately, or use the <a href="https://huggingface.co/spaces/facebook/MusicGen">public demo</a>
""")
with gr.Row():
with gr.Column():
with gr.Row():
text = gr.Text(label="Describe your music", interactive=True, value="4/4 100bpm 320kbps 48khz, Industrial/Electronic Soundtrack, Dark, Intense, Sci-Fi")
with gr.Column():
duration = gr.Slider(minimum=1, maximum=720, value=10, label="Duration (s)", interactive=True)
model = gr.Radio(["melody", "medium", "small", "large", "melody-large", "stereo-melody", "stereo-medium", "stereo-small", "stereo-large", "stereo-melody-large"], label="AI Model", value="melody-large", interactive=True)
with gr.Row():
submit = gr.Button("Generate", elem_id="btn-generate")
# Adapted from https://github.com/rkfg/audiocraft/blob/long/app.py, MIT license.
_ = gr.Button("Interrupt", elem_id="btn-interrupt").click(fn=interrupt, queue=False)
with gr.Row():
with gr.Column():
radio = gr.Radio(["file", "mic"], value="file", label="Condition on a melody (optional) File or Mic")
melody_filepath = gr.Audio(source="upload", type="filepath", label="Melody Condition (optional)", interactive=True, elem_id="melody-input")
with gr.Column():
harmony_only = gr.Radio(label="Use Harmony Only",choices=["No", "Yes"], value="No", interactive=True, info="Remove Drums?")
prompt_index = gr.Slider(label="Melody Condition Sample Segment", minimum=-1, maximum=MAX_PROMPT_INDEX, step=1, value=0, interactive=True, info="Which 30 second segment to condition with, - 1 condition each segment independantly")
with gr.Accordion("Video", open=False):
with gr.Row():
background= gr.Image(value="./assets/background.png", source="upload", label="Background", shape=(768,512), type="filepath", interactive=True)
with gr.Column():
include_title = gr.Checkbox(label="Add Title", value=True, interactive=True)
include_settings = gr.Checkbox(label="Add Settings to background", value=True, interactive=True)
with gr.Row():
title = gr.Textbox(label="Title", value="UnlimitedMusicGen", interactive=True)
settings_font = gr.Text(label="Settings Font", value="./assets/arial.ttf", interactive=True)
settings_font_color = gr.ColorPicker(label="Settings Font Color", value="#c87f05", interactive=True)
with gr.Accordion("Expert", open=False):
with gr.Row():
overlap = gr.Slider(minimum=0, maximum=15, value=2, step=1, label="Verse Overlap", interactive=True)
dimension = gr.Slider(minimum=-2, maximum=2, value=2, step=1, label="Dimension", info="determines which direction to add new segements of audio. (1 = stack tracks, 2 = lengthen, -2..0 = ?)", interactive=True)
with gr.Row():
topk = gr.Number(label="Top-k", value=280, precision=0, interactive=True)
topp = gr.Number(label="Top-p", value=1150, precision=0, interactive=True)
temperature = gr.Number(label="Randomness Temperature", value=0.7, precision=None, interactive=True)
cfg_coef = gr.Number(label="Classifier Free Guidance", value=8.5, precision=None, interactive=True)
with gr.Row():
seed = gr.Number(label="Seed", value=-1, precision=0, interactive=True)
gr.Button('\U0001f3b2\ufe0f', elem_classes="small-btn").click(fn=lambda: -1, outputs=[seed], queue=False)
reuse_seed = gr.Button('\u267b\ufe0f', elem_classes="small-btn")
with gr.Column() as c:
output = gr.Video(label="Generated Music")
wave_file = gr.File(label=".wav file", elem_id="output_wavefile", interactive=True)
seed_used = gr.Number(label='Seed used', value=-1, interactive=False)
radio.change(toggle_audio_src, radio, [melody_filepath], queue=False, show_progress=False)
melody_filepath.change(load_melody_filepath, inputs=[melody_filepath, title], outputs=[title, prompt_index , model], api_name="melody_filepath_change", queue=False)
reuse_seed.click(fn=lambda x: x, inputs=[seed_used], outputs=[seed], queue=False, api_name="reuse_seed")
submit.click(predict, inputs=[model, text,melody_filepath, duration, dimension, topk, topp, temperature, cfg_coef, background, title, settings_font, settings_font_color, seed, overlap, prompt_index, include_title, include_settings, harmony_only], outputs=[output, wave_file, seed_used], api_name="submit")
gr.Examples(
fn=predict,
examples=[
[
"4/4 120bpm 320kbps 48khz, An 80s driving pop song with heavy drums and synth pads in the background",
"./assets/bach.mp3",
"melody",
"80s Pop Synth"
],
[
"4/4 120bpm 320kbps 48khz, A cheerful country song with acoustic guitars",
"./assets/bolero_ravel.mp3",
"melody",
"Country Guitar"
],
[
"4/4 120bpm 320kbps 48khz, 90s rock song with electric guitar and heavy drums",
None,
"medium",
"90s Rock Guitar"
],
[
"4/4 120bpm 320kbps 48khz, a light and cheerly EDM track, with syncopated drums, aery pads, and strong emotions",
"./assets/bach.mp3",
"melody",
"EDM my Bach"
],
[
"4/4 320kbps 48khz, lofi slow bpm electro chill with organic samples",
None,
"medium",
"LoFi Chill"
],
],
inputs=[text, melody_filepath, model, title],
outputs=[output]
)
gr.HTML(value=versions_html(), visible=True, elem_id="versions")
# Show the interface
launch_kwargs = {}
share = kwargs.get('share', False)
server_port = kwargs.get('server_port', 0)
server_name = kwargs.get('listen')
launch_kwargs['server_name'] = server_name
if server_port > 0:
launch_kwargs['server_port'] = server_port
if share:
launch_kwargs['share'] = share
launch_kwargs['favicon_path']= "./assets/favicon.ico"
demo.queue(max_size=10, concurrency_count=1, api_open=False).launch(**launch_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--listen',
type=str,
default='0.0.0.0' if 'SPACE_ID' in os.environ else '127.0.0.1',
help='IP to listen on for connections to Gradio',
)
parser.add_argument(
'--username', type=str, default='', help='Username for authentication'
)
parser.add_argument(
'--password', type=str, default='', help='Password for authentication'
)
parser.add_argument(
'--server_port',
type=int,
default=0,
help='Port to run the server listener on',
)
parser.add_argument(
'--inbrowser', action='store_true', help='Open in browser'
)
parser.add_argument(
'--share', action='store_true', help='Share the gradio UI'
)
parser.add_argument(
'--unload_model', action='store_true', help='Unload the model after every generation to save GPU memory'
)
parser.add_argument(
'--unload_to_cpu', action='store_true', help='Move the model to main RAM after every generation to save GPU memory but reload faster than after full unload (see above)'
)
parser.add_argument(
'--cache', action='store_true', help='Cache models in RAM to quickly switch between them'
)
args = parser.parse_args()
launch_kwargs = {}
launch_kwargs['server_name'] = args.listen
if args.username and args.password:
launch_kwargs['auth'] = (args.username, args.password)
if args.server_port:
launch_kwargs['server_port'] = args.server_port
if args.inbrowser:
launch_kwargs['inbrowser'] = args.inbrowser
if args.share:
launch_kwargs['share'] = args.share
launch_kwargs['favicon_path']= "./assets/favicon.ico"
UNLOAD_MODEL = args.unload_model
MOVE_TO_CPU = args.unload_to_cpu
if args.cache:
MODELS = {}
ui(
unload_to_cpu = MOVE_TO_CPU,
share=args.share
)
|