Spaces:
Sleeping
Sleeping
File size: 2,727 Bytes
05101d2 855bfa5 05101d2 855bfa5 05101d2 855bfa5 05101d2 f07399a 05101d2 97c4b4e 05101d2 855bfa5 05101d2 855bfa5 05101d2 97c4b4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
### 1. Imports and class names setup ###
import gradio as gr
import os
import torch
from model import TinyCNN
from timeit import default_timer as timer
from typing import Tuple, Dict
import torch
import torchvision
from torchvision import transforms
from torch import nn
# Setup class names
with open("class_names.txt", "r") as f: # reading them in from class_names.txt
class_names = [defects.strip() for defects in f.readlines()]
### 2. Model and transforms preparation ###
# Create model
TinyCNN_model = TinyCNN(input_shape=3,
hidden_units=64,
output_shape=len(class_names))
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
# Load saved weights
TinyCNN_model.load_state_dict(
torch.load(
f="cnn.pth",
map_location=torch.device("cpu"), # load to CPU
)
)
### 3. Predict function ###
# Create predict function
def predict(img) -> Tuple[Dict, float]:
"""Transforms and performs a prediction on img and returns prediction and time taken.
"""
# Start the timer
start_time = timer()
# Transform the target image and add a batch dimension
img = transform(img).unsqueeze(dim=0)
# Put model into evaluation mode and turn on inference mode
TinyCNN_model.eval()
with torch.inference_mode():
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
pred_probs = torch.softmax(TinyCNN_model(img), dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
# Return the prediction dictionary and prediction time
return pred_labels_and_probs, pred_time
### 4. Gradio app ###
# Create title, description and article strings
title = "Wafer Defect Detection"
description = "An app to predict Wafer Defects in semiconductors.[Center, Donut, Edge-Loc, Edge-Ring, Loc, Near-full, Random, Scratch, none]"
# Create examples list from "examples/" directory
example_list = [["example/" + example] for example in os.listdir("example")]
# Create Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(sources=["upload"], type='pil'),
outputs=[
gr.Label(num_top_classes=5, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
examples=example_list,
title=title,
description=description,
)
# Launch the app!
demo.launch() |