Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
class TinyCNN(nn.Module): | |
def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None: | |
super().__init__() | |
self.conv_block_1 = nn.Sequential( | |
nn.Conv2d(in_channels=input_shape, | |
out_channels=hidden_units, | |
kernel_size=3, # how big is the square that's going over the image? | |
stride=1, # default | |
padding=1), # options = "valid" (no padding) or "same" (output has same shape as input) or int for specific number | |
nn.BatchNorm2d(hidden_units), | |
nn.ReLU(), | |
# nn.Conv2d(in_channels=hidden_units, | |
# out_channels=128, | |
# kernel_size=3, | |
# stride=1, | |
# padding=0), | |
# nn.BatchNorm2d(128), | |
# nn.ReLU(), | |
nn.MaxPool2d(kernel_size=2, | |
stride=2), # default stride value is same as kernel_size | |
nn.Dropout(p=0.25) | |
) | |
self.conv_block_2 = nn.Sequential( | |
nn.Conv2d(hidden_units, 128, kernel_size=3, padding=1), | |
# nn.ReLU(), | |
# nn.Conv2d(128, 128, kernel_size=3, padding=0), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Dropout(p=0.25) | |
) | |
self.conv_block_3 = nn.Sequential( | |
nn.Conv2d(128, 512, kernel_size=3, padding=1), | |
# nn.ReLU(), | |
# nn.Conv2d(128, 512, kernel_size=3, padding=0), | |
nn.BatchNorm2d(512), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Dropout(p=0.25) | |
) | |
self.conv_block_4 = nn.Sequential( | |
nn.Conv2d(512, 512, kernel_size=3, padding=1), | |
# nn.ReLU(), | |
# nn.Conv2d(512, 512, kernel_size=3, padding=2), | |
nn.BatchNorm2d(512), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Dropout(p=0.25) | |
) | |
self.fc_1 = nn.Sequential( | |
nn.Flatten(), | |
nn.Linear(in_features=256*392, out_features = 256), | |
nn.BatchNorm1d(256), | |
nn.ReLU(), | |
nn.Dropout(p=0.25) | |
) | |
self.fc_2 = nn.Sequential( | |
# Where did this in_features shape come from? | |
# It's because each layer of our network compresses and changes the shape of our inputs data. | |
nn.Linear(in_features=256, | |
out_features=512), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Dropout(p=0.25) | |
) | |
self.classifier = nn.Sequential( | |
nn.Linear(in_features=512, | |
out_features=output_shape) | |
) | |
def forward(self, x): | |
x = self.conv_block_1(x) | |
x = self.conv_block_2(x) | |
x = self.conv_block_3(x) | |
x = self.conv_block_4(x) | |
x = self.fc_1(x) | |
x = self.fc_2(x) | |
x = self.classifier(x) | |
return x | |