### 1. Imports and class names setup ### import gradio as gr import os import torch from model import TinyCNN from timeit import default_timer as timer from typing import Tuple, Dict import torch import torchvision from torchvision import transforms from torch import nn # Setup class names with open("class_names.txt", "r") as f: # reading them in from class_names.txt class_names = [defects.strip() for defects in f.readlines()] ### 2. Model and transforms preparation ### # Create model TinyCNN_model = TinyCNN(input_shape=3, hidden_units=64, output_shape=len(class_names)) transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor() ]) # Load saved weights TinyCNN_model.load_state_dict( torch.load( f="cnn.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = transform(img).unsqueeze(dim=0) # Put model into evaluation mode and turn on inference mode TinyCNN_model.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(TinyCNN_model(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "Wafer Defect Detection" description = "An app to predict Wafer Defects in semiconductors.[Center, Donut, Edge-Loc, Edge-Ring, Loc, Near-full, Random, Scratch, none]" # Create examples list from "examples/" directory example_list = [["example/" + example] for example in os.listdir("example")] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(sources=["upload"], type='pil'), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction time (s)"), ], examples=example_list, title=title, description=description, ) # Launch the app! demo.launch()