### 1. Imports and class names setup ### import gradio as gr import os import torch from model import TinyCNN from timeit import default_timer as timer from typing import Tuple, Dict import torch import torchvision from torchvision import transforms from torch import nn # Setup class names with open("class_names.txt", "r") as f: # reading them in from class_names.txt class_names = [food_name.strip() for food_name in f.readlines()] ### 2. Model and transforms preparation ### # Create model TinyCNN_model = TinyCNN(input_shape=3, # number of color channels (3 for RGB) hidden_units=64, output_shape=len(class_names)) loss_fn = nn.CrossEntropyLoss() # measure how wrong our model is optimizer = torch.optim.Adam(params = TinyCNN_model.parameters() ,lr=0.001) transform = transforms.Compose([ transforms.Resize((128, 128)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor() ]) # Load saved weights TinyCNN_model.load_state_dict( torch.load( f="TinyCNN_3.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img) : """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = transform(img).unsqueeze(dim=0) # Put model into evaluation mode and turn on inference mode TinyCNN_model.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(TinyCNN_model(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) emoji_list = [["emojis/" + example] for example in os.listdir("emojis")] emoji_1 = torch.argmax(pred_probs) emoji = class_names[emoji_1] if emoji == 'angry': a = emoji_list[0] a = a[0] return pred_labels_and_probs,a elif emoji == 'disgust': a = emoji_list[1] a = a[0] return pred_labels_and_probs,a elif emoji == 'fear': a = emoji_list[2] a = a[0] return pred_labels_and_probs,a elif emoji == 'happy': a = emoji_list[3] a = a[0] return pred_labels_and_probs,a elif emoji == 'neutral': a = emoji_list[4] a = a[0] return pred_labels_and_probs,a elif emoji == 'sad': a = emoji_list[5] a = a[0] return pred_labels_and_probs,a elif emoji == 'surprise': a = emoji_list[6] a = a[0] return pred_labels_and_probs,a # Return the prediction dictionary and prediction time ### 4. Gradio app ### # Create title, description and article strings title = "Expression Detection" description = "An app to predict emotions from the list.[Angry, Disgust, Fear, Happy, Neutral, Sad, Surprise]. The model can predict on single face only. So upload an image which has only one face" article = "Created as a college project." # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(sources=["upload"], type='pil'), outputs=[ gr.Label(num_top_classes=5, label="Predictions"), gr.Image(label="Emotion"), ], examples=example_list, title=title, description=description, article=article, ) # Launch the app! demo.launch()