Upload 5 files
Browse files- .gitattributes +1 -0
- Data.csv +3 -0
- Groq.txt +1 -0
- app.py +247 -0
- requirements.txt +4 -0
- src.py +131 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Data.csv filter=lfs diff=lfs merge=lfs -text
|
Data.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d997c25084b512ce9ec8b5fab0a76ab28ca74b8b7216065cbe0d74b1d989604e
|
3 |
+
size 232142693
|
Groq.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
GROQ_API_KEY = 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
|
app.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import pandas as pd
|
4 |
+
import random
|
5 |
+
from os.path import join
|
6 |
+
from src import preprocess_and_load_df, load_agent, ask_agent, decorate_with_code, show_response, get_from_user, load_smart_df, ask_question
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from langchain_groq.chat_models import ChatGroq
|
9 |
+
|
10 |
+
load_dotenv("Groq.txt")
|
11 |
+
Groq_Token = os.environ["GROQ_API_KEY"]
|
12 |
+
models = {"llama3":"llama3-70b-8192","mixtral": "mixtral-8x7b-32768", "llama2": "llama2-70b-4096", "gemma": "gemma-7b-it"}
|
13 |
+
|
14 |
+
self_path = os.path.dirname(os.path.abspath(__file__))
|
15 |
+
|
16 |
+
# Using HTML and CSS to center the title
|
17 |
+
st.write(
|
18 |
+
"""
|
19 |
+
<style>
|
20 |
+
.title {
|
21 |
+
text-align: center;
|
22 |
+
color: #17becf;
|
23 |
+
}
|
24 |
+
""",
|
25 |
+
unsafe_allow_html=True,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Displaying the centered title
|
29 |
+
st.markdown("<h2 class='title'>VayuBuddy</h2>", unsafe_allow_html=True)
|
30 |
+
|
31 |
+
# os.environ["PANDASAI_API_KEY"] = "$2a$10$gbmqKotzJOnqa7iYOun8eO50TxMD/6Zw1pLI2JEoqncwsNx4XeBS2"
|
32 |
+
|
33 |
+
# with open(join(self_path, "context1.txt")) as f:
|
34 |
+
# context = f.read().strip()
|
35 |
+
|
36 |
+
# agent = load_agent(join(self_path, "app_trial_1.csv"), context)
|
37 |
+
# df = preprocess_and_load_df(join(self_path, "Data.csv"))
|
38 |
+
# inference_server = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
39 |
+
# inference_server = "https://api-inference.huggingface.co/models/codellama/CodeLlama-13b-hf"
|
40 |
+
# inference_server = "https://api-inference.huggingface.co/models/pandasai/bamboo-llm"
|
41 |
+
|
42 |
+
model_name = st.sidebar.selectbox("Select LLM:", ["llama3","mixtral", "llama2", "gemma"])
|
43 |
+
|
44 |
+
questions = ('Custom Prompt',
|
45 |
+
'Plot the monthly average PM2.5 for the year 2023.',
|
46 |
+
'Which month has the highest average PM2.5 overall?',
|
47 |
+
'Which month has the highest PM2.5 overall?',
|
48 |
+
'Which month has the highest average PM2.5 in 2023 for Mumbai?',
|
49 |
+
'Plot and compare monthly timeseries of pollution for Mumbai and Bengaluru.',
|
50 |
+
'Plot the yearly average PM2.5.',
|
51 |
+
'Plot the monthly average PM2.5 of Delhi',
|
52 |
+
'Mumbai and Bengaluru for the year 2022.',
|
53 |
+
'Which month has the highest pollution?',
|
54 |
+
'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
55 |
+
'Which city has the highest PM2.5 level in July 2022?',
|
56 |
+
'Plot and compare monthly timeseries of PM2.5 for Mumbai and Bengaluru.',
|
57 |
+
'Plot and compare the monthly average PM2.5 of Delhi, Mumbai and Bengaluru for the year 2022.',
|
58 |
+
'Plot the monthly average PM2.5.',
|
59 |
+
'Plot the monthly average PM10 for the year 2023.',
|
60 |
+
'Which month has the highest PM2.5?',
|
61 |
+
'Plot the monthly average PM2.5 of Delhi for the year 2022.',
|
62 |
+
'Plot the monthly average PM2.5 of Bengaluru for the year 2022.',
|
63 |
+
'Plot the monthly average PM2.5 of Mumbai for the year 2022.',
|
64 |
+
'Which state has the highest average PM2.5?',
|
65 |
+
'Plot monthly PM2.5 in Gujarat for 2023.',
|
66 |
+
'What is the name of the month with the highest average PM2.5 overall?')
|
67 |
+
|
68 |
+
waiting_lines = ("Thinking...", "Just a moment...", "Let me think...", "Working on it...", "Processing...", "Hold on...", "One moment...", "On it...")
|
69 |
+
|
70 |
+
# agent = load_agent(df, context="", inference_server=inference_server, name=model_name)
|
71 |
+
|
72 |
+
# Initialize chat history
|
73 |
+
if "responses" not in st.session_state:
|
74 |
+
st.session_state.responses = []
|
75 |
+
|
76 |
+
# Display chat responses from history on app rerun
|
77 |
+
for response in st.session_state.responses:
|
78 |
+
if not response["no_response"]:
|
79 |
+
show_response(st, response)
|
80 |
+
|
81 |
+
show = True
|
82 |
+
|
83 |
+
prompt = st.sidebar.selectbox("Select a Prompt:", questions)
|
84 |
+
|
85 |
+
# add a note "select custom prompt to ask your own question"
|
86 |
+
|
87 |
+
|
88 |
+
if prompt == 'Custom Prompt':
|
89 |
+
show = False
|
90 |
+
# React to user input
|
91 |
+
prompt = st.chat_input("Ask me anything about air quality!", key=10)
|
92 |
+
if prompt:
|
93 |
+
show = True
|
94 |
+
|
95 |
+
if show:
|
96 |
+
|
97 |
+
# Add user input to chat history
|
98 |
+
response = get_from_user(prompt)
|
99 |
+
response["no_response"] = False
|
100 |
+
st.session_state.responses.append(response)
|
101 |
+
|
102 |
+
# Display user input
|
103 |
+
show_response(st, response)
|
104 |
+
|
105 |
+
no_response = False
|
106 |
+
|
107 |
+
# select random waiting line
|
108 |
+
with st.spinner(random.choice(waiting_lines)):
|
109 |
+
ran = False
|
110 |
+
for i in range(5):
|
111 |
+
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
112 |
+
|
113 |
+
df_check = pd.read_csv("Data.csv")
|
114 |
+
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
115 |
+
df_check = df_check.head(5)
|
116 |
+
|
117 |
+
new_line = "\n"
|
118 |
+
|
119 |
+
template = f"""```python
|
120 |
+
import pandas as pd
|
121 |
+
import matplotlib.pyplot as plt
|
122 |
+
|
123 |
+
df = pd.read_csv("Data.csv")
|
124 |
+
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
125 |
+
|
126 |
+
# df.dtypes
|
127 |
+
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
128 |
+
|
129 |
+
# {prompt.strip()}
|
130 |
+
# <your code here>
|
131 |
+
```
|
132 |
+
"""
|
133 |
+
|
134 |
+
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
135 |
+
* Frequency of data is daily.
|
136 |
+
* Number of stations in a city is determined by finding the unique stations in the dataset along with their city
|
137 |
+
* `pollution` generally means `PM2.5`.
|
138 |
+
* `pollution` generally means `PM2.5`.
|
139 |
+
* PM2.5 guidelines: India: 60, WHO: 25.
|
140 |
+
* PM10 guidelines: India: 100, WHO: 50.
|
141 |
+
* You already have df, so don't read the csv file
|
142 |
+
* Don't print, but save result in a variable `answer` and make it global.
|
143 |
+
* If result is a plot make it in tight layout, save it and save path in `answer`. Example: `answer='plot.png'`
|
144 |
+
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
145 |
+
* If the result is not a plot, return a csv file containing the data and the corresponding answer, as well as the data samples used
|
146 |
+
* If result is a plot, show the India and WHO guidelines in the plot.
|
147 |
+
* Whenever you do an aggregation, do it via mean and report the standard deviation and standard error, report the number of data points.
|
148 |
+
* Whenever you're reporting a floating point number, round it to 2 decimal places.
|
149 |
+
* Always report the unit of the data. Example: `The average PM2.5 is 45.67 µg/m³`
|
150 |
+
* If the result is a plot, make it using tableau 20 colour scheme and big font size.
|
151 |
+
* Consider station and sensor synonymously.
|
152 |
+
Complete the following code.
|
153 |
+
|
154 |
+
{template}
|
155 |
+
|
156 |
+
"""
|
157 |
+
|
158 |
+
answer = llm.invoke(query)
|
159 |
+
code = f"""
|
160 |
+
{template.split("```python")[1].split("```")[0]}
|
161 |
+
{answer.content.split("```python")[1].split("```")[0]}
|
162 |
+
"""
|
163 |
+
# update variable `answer` when code is executed
|
164 |
+
try:
|
165 |
+
exec(code)
|
166 |
+
ran = True
|
167 |
+
no_response = False
|
168 |
+
except Exception as e:
|
169 |
+
no_response = True
|
170 |
+
exception = e
|
171 |
+
|
172 |
+
response = {"role": "assistant", "content": answer, "gen_code": code, "ex_code": code, "last_prompt": prompt, "no_response": no_response}
|
173 |
+
|
174 |
+
# Get response from agent
|
175 |
+
# response = ask_question(model_name=model_name, question=prompt)
|
176 |
+
# response = ask_agent(agent, prompt)
|
177 |
+
|
178 |
+
if ran:
|
179 |
+
break
|
180 |
+
|
181 |
+
if no_response:
|
182 |
+
st.error(f"Failed to generate right output due to the following error:\n\n{exception}")
|
183 |
+
# Add agent response to chat history
|
184 |
+
st.session_state.responses.append(response)
|
185 |
+
|
186 |
+
# Display agent response
|
187 |
+
if not no_response:
|
188 |
+
show_response(st, response)
|
189 |
+
|
190 |
+
del prompt
|
191 |
+
|
192 |
+
|
193 |
+
|
194 |
+
st.sidebar.info("\nCalculator")
|
195 |
+
Pollutant = ["O3", "PM2.5", "PM10", "CO", "SO2", "NO2"]
|
196 |
+
Calculator_index = st.sidebar.selectbox("Select a Prompt:", Pollutant)
|
197 |
+
|
198 |
+
if Calculator_index:
|
199 |
+
concentration = st.sidebar.number_input(f"Enter {Calculator_index} concentration (µg/m³):")
|
200 |
+
calculate_button = st.sidebar.button("Calculate")
|
201 |
+
if concentration:
|
202 |
+
if calculate_button:
|
203 |
+
# Define breakpoints and AQI categories for the selected pollutant
|
204 |
+
breakpoints_low = {
|
205 |
+
"O3": [0, 50, 100, 168, 208, 748],
|
206 |
+
"PM2.5": [0, 30, 60, 90, 120, 250],
|
207 |
+
"PM10": [0, 50, 100, 250, 350, 430],
|
208 |
+
"CO": [0, 1000, 2000, 10000, 17000, 34000],
|
209 |
+
"SO2": [0, 40, 80, 380, 800, 1600],
|
210 |
+
"NO2": [0, 40, 80, 180, 280, 400]
|
211 |
+
}
|
212 |
+
|
213 |
+
breakpoints_high = {
|
214 |
+
"O3": [50, 100, 168, 208, 748,1000],
|
215 |
+
"PM2.5": [30, 60, 90, 120, 250,1000],
|
216 |
+
"PM10": [50, 100, 250, 350, 430,1000],
|
217 |
+
"CO": [1000, 2000, 10000, 17000, 34000,50000],
|
218 |
+
"SO2": [40, 80, 380, 800, 1600,2000],
|
219 |
+
"NO2": [ 40, 80, 180, 280, 400,1000]
|
220 |
+
}
|
221 |
+
# Define corresponding AQI categories
|
222 |
+
categories_low= [0, 50, 100, 200, 300, 400]
|
223 |
+
categories_high = [50, 100, 200, 300, 400,500]
|
224 |
+
|
225 |
+
# Find the appropriate AQI category based on concentration
|
226 |
+
|
227 |
+
for i in range(len(breakpoints_high[Calculator_index])):
|
228 |
+
if concentration <= breakpoints_high[Calculator_index][i]:
|
229 |
+
BPHI = breakpoints_high[Calculator_index][i]
|
230 |
+
IHI = categories_high[i]
|
231 |
+
# Calculate AQI using India formula
|
232 |
+
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
233 |
+
#st.sidebar.write(f"The Air Quality Index (AQI) for {Calculator_index} is: {AQI}")
|
234 |
+
break
|
235 |
+
|
236 |
+
for i in range(len(breakpoints_low[Calculator_index])):
|
237 |
+
if concentration >= breakpoints_low[Calculator_index][i]:
|
238 |
+
BPLI = breakpoints_low[Calculator_index][i]
|
239 |
+
ILI = categories_low[i]
|
240 |
+
# Calculate AQI using India formula
|
241 |
+
#AQI = ((categories[i] - categories[i-1]) / (breakpoints[Calculator_index][i] - breakpoints[Calculator_index][i-1])) * (concentration - breakpoints[Calculator_index][i-1]) + categories[i-1]
|
242 |
+
#st.sidebar.write(f"The Air Quality Index (AQI) for {Calculator_index} is: {AQI}")
|
243 |
+
break
|
244 |
+
|
245 |
+
AQI = ((IHI - ILI) / (BPHI - BPLI)) * (round(concentration) - BPLI) + ILI
|
246 |
+
st.sidebar.write(f"The Air Quality Index (AQI) for {Calculator_index} is: {AQI}")
|
247 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==0.88.0
|
2 |
+
pandas==1.3.3
|
3 |
+
langchain-groq==1.0.0
|
4 |
+
python-dotenv==0.19.1
|
src.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import pandas as pd
|
3 |
+
from pandasai import Agent, SmartDataframe
|
4 |
+
from typing import Tuple
|
5 |
+
from PIL import Image
|
6 |
+
from pandasai.llm import HuggingFaceTextGen
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
from langchain_groq.chat_models import ChatGroq
|
9 |
+
|
10 |
+
load_dotenv("Groq.txt")
|
11 |
+
Groq_Token = os.environ["GROQ_API_KEY"]
|
12 |
+
models = {"mixtral": "mixtral-8x7b-32768", "llama": "llama2-70b-4096", "gemma": "gemma-7b-it"}
|
13 |
+
|
14 |
+
hf_token = os.getenv("HF_READ")
|
15 |
+
|
16 |
+
def preprocess_and_load_df(path: str) -> pd.DataFrame:
|
17 |
+
df = pd.read_csv(path)
|
18 |
+
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
19 |
+
return df
|
20 |
+
|
21 |
+
def load_agent(df: pd.DataFrame, context: str, inference_server: str, name="mixtral") -> Agent:
|
22 |
+
# llm = HuggingFaceTextGen(
|
23 |
+
# inference_server_url=inference_server,
|
24 |
+
# max_new_tokens=250,
|
25 |
+
# temperature=0.1,
|
26 |
+
# repetition_penalty=1.2,
|
27 |
+
# top_k=5,
|
28 |
+
# )
|
29 |
+
# llm.client.headers = {"Authorization": f"Bearer {hf_token}"}
|
30 |
+
llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
31 |
+
|
32 |
+
agent = Agent(df, config={"llm": llm, "enable_cache": False, "options": {"wait_for_model": True}})
|
33 |
+
agent.add_message(context)
|
34 |
+
return agent
|
35 |
+
|
36 |
+
def load_smart_df(df: pd.DataFrame, inference_server: str, name="mixtral") -> SmartDataframe:
|
37 |
+
# llm = HuggingFaceTextGen(
|
38 |
+
# inference_server_url=inference_server,
|
39 |
+
# )
|
40 |
+
# llm.client.headers = {"Authorization": f"Bearer {hf_token}"}
|
41 |
+
llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
42 |
+
df = SmartDataframe(df, config={"llm": llm, "max_retries": 5, "enable_cache": False})
|
43 |
+
return df
|
44 |
+
|
45 |
+
def get_from_user(prompt):
|
46 |
+
return {"role": "user", "content": prompt}
|
47 |
+
|
48 |
+
def ask_agent(agent: Agent, prompt: str) -> Tuple[str, str, str]:
|
49 |
+
response = agent.chat(prompt)
|
50 |
+
gen_code = agent.last_code_generated
|
51 |
+
ex_code = agent.last_code_executed
|
52 |
+
last_prompt = agent.last_prompt
|
53 |
+
return {"role": "assistant", "content": response, "gen_code": gen_code, "ex_code": ex_code, "last_prompt": last_prompt}
|
54 |
+
|
55 |
+
def decorate_with_code(response: dict) -> str:
|
56 |
+
return f"""<details>
|
57 |
+
<summary>Generated Code</summary>
|
58 |
+
|
59 |
+
```python
|
60 |
+
{response["gen_code"]}
|
61 |
+
```
|
62 |
+
</details>
|
63 |
+
|
64 |
+
<details>
|
65 |
+
<summary>Prompt</summary>
|
66 |
+
|
67 |
+
{response["last_prompt"]}
|
68 |
+
"""
|
69 |
+
|
70 |
+
def show_response(st, response):
|
71 |
+
with st.chat_message(response["role"]):
|
72 |
+
try:
|
73 |
+
image = Image.open(response["content"])
|
74 |
+
if "gen_code" in response:
|
75 |
+
st.markdown(decorate_with_code(response), unsafe_allow_html=True)
|
76 |
+
st.image(image)
|
77 |
+
except Exception as e:
|
78 |
+
if "gen_code" in response:
|
79 |
+
display_content = decorate_with_code(response) + f"""</details>
|
80 |
+
|
81 |
+
{response["content"]}"""
|
82 |
+
else:
|
83 |
+
display_content = response["content"]
|
84 |
+
st.markdown(display_content, unsafe_allow_html=True)
|
85 |
+
|
86 |
+
def ask_question(model_name, question):
|
87 |
+
llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1)
|
88 |
+
|
89 |
+
df_check = pd.read_csv("Data.csv")
|
90 |
+
df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"])
|
91 |
+
df_check = df_check.head(5)
|
92 |
+
|
93 |
+
new_line = "\n"
|
94 |
+
|
95 |
+
template = f"""```python
|
96 |
+
import pandas as pd
|
97 |
+
import matplotlib.pyplot as plt
|
98 |
+
|
99 |
+
df = pd.read_csv("Data.csv")
|
100 |
+
df["Timestamp"] = pd.to_datetime(df["Timestamp"])
|
101 |
+
|
102 |
+
# df.dtypes
|
103 |
+
{new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))}
|
104 |
+
|
105 |
+
# {question.strip()}
|
106 |
+
# <your code here>
|
107 |
+
```
|
108 |
+
"""
|
109 |
+
|
110 |
+
query = f"""I have a pandas dataframe data of PM2.5 and PM10.
|
111 |
+
* Frequency of data is daily.
|
112 |
+
* `pollution` generally means `PM2.5`.
|
113 |
+
* Save result in a variable `answer` and make it global.
|
114 |
+
* If result is a plot, save it and save path in `answer`. Example: `answer='plot.png'`
|
115 |
+
* If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'`
|
116 |
+
|
117 |
+
Complete the following code.
|
118 |
+
|
119 |
+
{template}
|
120 |
+
|
121 |
+
"""
|
122 |
+
|
123 |
+
answer = llm.invoke(query)
|
124 |
+
code = f"""
|
125 |
+
{template.split("```python")[1].split("```")[0]}
|
126 |
+
{answer.content.split("```python")[1].split("```")[0]}
|
127 |
+
"""
|
128 |
+
# update variable `answer` when code is executed
|
129 |
+
exec(code)
|
130 |
+
|
131 |
+
return {"role": "assistant", "content": answer.content, "gen_code": code, "ex_code": code, "last_prompt": question}
|