import os import pandas as pd from pandasai import Agent, SmartDataframe from typing import Tuple from PIL import Image from pandasai.llm import HuggingFaceTextGen from dotenv import load_dotenv from langchain_groq.chat_models import ChatGroq from langchain_google_genai import GoogleGenerativeAI load_dotenv() Groq_Token = os.environ["GROQ_API_KEY"] models = {"mixtral": "mixtral-8x7b-32768", "llama": "llama2-70b-4096", "gemma": "gemma-7b-it", "gemini-pro": "gemini-pro"} hf_token = os.getenv("HF_READ") gemini_token = os.getenv("GEMINI_TOKEN") def preprocess_and_load_df(path: str) -> pd.DataFrame: df = pd.read_csv(path) df["Timestamp"] = pd.to_datetime(df["Timestamp"]) return df def load_agent(df: pd.DataFrame, context: str, inference_server: str, name="mixtral") -> Agent: # llm = HuggingFaceTextGen( # inference_server_url=inference_server, # max_new_tokens=250, # temperature=0.1, # repetition_penalty=1.2, # top_k=5, # ) # llm.client.headers = {"Authorization": f"Bearer {hf_token}"} if name == "gemini-pro": llm = GoogleGenerativeAI(model=model, google_api_key=gemini_token, temperature=0.1) else: llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1) agent = Agent(df, config={"llm": llm, "enable_cache": False, "options": {"wait_for_model": True}}) agent.add_message(context) return agent def load_smart_df(df: pd.DataFrame, inference_server: str, name="mixtral") -> SmartDataframe: # llm = HuggingFaceTextGen( # inference_server_url=inference_server, # ) # llm.client.headers = {"Authorization": f"Bearer {hf_token}"} llm = ChatGroq(model=models[name], api_key=os.getenv("GROQ_API"), temperature=0.1) df = SmartDataframe(df, config={"llm": llm, "max_retries": 5, "enable_cache": False}) return df def get_from_user(prompt): return {"role": "user", "content": prompt} def ask_agent(agent: Agent, prompt: str) -> Tuple[str, str, str]: response = agent.chat(prompt) gen_code = agent.last_code_generated ex_code = agent.last_code_executed last_prompt = agent.last_prompt return {"role": "assistant", "content": response, "gen_code": gen_code, "ex_code": ex_code, "last_prompt": last_prompt} def decorate_with_code(response: dict) -> str: return f"""
Generated Code ```python {response["gen_code"]} ```
Prompt {response["last_prompt"]} """ def show_response(st, response): with st.chat_message(response["role"]): try: image = Image.open(response["content"]) if "gen_code" in response: st.markdown(decorate_with_code(response), unsafe_allow_html=True) st.image(image) return {"is_image": True} except Exception as e: if "gen_code" in response: display_content = decorate_with_code(response) + f"""
{response["content"]}""" else: display_content = response["content"] st.markdown(display_content, unsafe_allow_html=True) return {"is_image": False} def ask_question(model_name, question): if model_name == "gemini-pro": llm = GoogleGenerativeAI(model=model, google_api_key=os.environ.get("GOOGLE_API_KEY"), temperature=0) else: llm = ChatGroq(model=models[model_name], api_key=os.getenv("GROQ_API"), temperature=0.1) df_check = pd.read_csv("Data.csv") df_check["Timestamp"] = pd.to_datetime(df_check["Timestamp"]) df_check = df_check.head(5) new_line = "\n" template = f"""```python import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("Data.csv") df["Timestamp"] = pd.to_datetime(df["Timestamp"]) # df.dtypes {new_line.join(map(lambda x: '# '+x, str(df_check.dtypes).split(new_line)))} # {question.strip()} # ``` """ query = f"""I have a pandas dataframe data of PM2.5 and PM10. * Frequency of data is daily. * `pollution` generally means `PM2.5`. * Save result in a variable `answer` and make it global. * If result is a plot, save it and save path in `answer`. Example: `answer='plot.png'` * If result is not a plot, save it as a string in `answer`. Example: `answer='The city is Mumbai'` Complete the following code. {template} """ if model_name == "gemini-pro": answer = llm.invoke(query) else: answer = llm.invoke(query).content code = f""" {template.split("```python")[1].split("```")[0]} {answer.split("```python")[1].split("```")[0]} """ # update variable `answer` when code is executed exec(code) return {"role": "assistant", "content": answer.content, "gen_code": code, "ex_code": code, "last_prompt": question}