Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
from PIL import Image | |
model = keras.models.load_model("skinCancerClassification.h5") | |
class_labels = { | |
0: 'dermatofibroma', | |
1: 'melanoma', | |
2: 'nevus', | |
3: 'seborrheic keratosis', | |
4: 'squamous cell carcinoma', | |
5: 'pigmented benign keratosis', | |
6: 'basal cell carcinoma', | |
7: 'vascular lesion', | |
8: 'actinic keratosis' | |
} | |
def classify_skin_cancer(image): | |
# Preprocess the image | |
image = np.array(image) | |
image = tf.image.resize(image, (75, 100)) | |
image = np.expand_dims(image, axis=0) | |
predictions = model.predict(image) | |
class_index = np.argmax(predictions) | |
class_name = class_labels[class_index] | |
confidence = np.max(predictions) | |
return f"Predicted Class: {class_name}\nConfidence: {confidence:.2f}" | |
iface = gr.Interface( | |
fn=classify_skin_cancer, | |
inputs="image", | |
outputs="text", | |
live=True, | |
title='<h1 style="text-align: center;">Skin Cancer Classification! π»</h1>', | |
description=( | |
"<h2><b>Explore Skin Cancer Image Classification!</b></h2>" | |
"<p>Join me in the world of skin health and medical innovation. " \ | |
"Be part of a game-changing journey where you can support healthcare, " \ | |
"make a real difference, and impact lives. ππ©Ίπ€ " \ | |
"Discover the power of AI in skin cancer diagnosis. Start exploring now!</p>" | |
) | |
) | |
iface.launch() | |