Hecheng0625's picture
Upload 409 files
c968fc3 verified
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
"""Decoder self-attention layer definition."""
from typing import Optional, Tuple
import torch
from torch import nn
class DecoderLayer(nn.Module):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (torch.nn.Module): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (torch.nn.Module): Inter-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
If `None` is passed, Inter-attention is not used, such as
CIF, GPT, and other decoder only model.
feed_forward (torch.nn.Module): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
True: use layer_norm before each sub-block.
False: to use layer_norm after each sub-block.
"""
def __init__(
self,
size: int,
self_attn: nn.Module,
src_attn: Optional[nn.Module],
feed_forward: nn.Module,
dropout_rate: float,
normalize_before: bool = True,
):
"""Construct an DecoderLayer object."""
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size, eps=1e-5)
self.norm2 = nn.LayerNorm(size, eps=1e-5)
self.norm3 = nn.LayerNorm(size, eps=1e-5)
self.dropout = nn.Dropout(dropout_rate)
self.normalize_before = normalize_before
def forward(
self,
tgt: torch.Tensor,
tgt_mask: torch.Tensor,
memory: torch.Tensor,
memory_mask: torch.Tensor,
cache: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute decoded features.
Args:
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size).
tgt_mask (torch.Tensor): Mask for input tensor
(#batch, maxlen_out).
memory (torch.Tensor): Encoded memory
(#batch, maxlen_in, size).
memory_mask (torch.Tensor): Encoded memory mask
(#batch, maxlen_in).
cache (torch.Tensor): cached tensors.
(#batch, maxlen_out - 1, size).
Returns:
torch.Tensor: Output tensor (#batch, maxlen_out, size).
torch.Tensor: Mask for output tensor (#batch, maxlen_out).
torch.Tensor: Encoded memory (#batch, maxlen_in, size).
torch.Tensor: Encoded memory mask (#batch, maxlen_in).
"""
residual = tgt
if self.normalize_before:
tgt = self.norm1(tgt)
if cache is None:
tgt_q = tgt
tgt_q_mask = tgt_mask
else:
# compute only the last frame query keeping dim: max_time_out -> 1
assert cache.shape == (
tgt.shape[0],
tgt.shape[1] - 1,
self.size,
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}"
tgt_q = tgt[:, -1:, :]
residual = residual[:, -1:, :]
tgt_q_mask = tgt_mask[:, -1:, :]
x = residual + self.dropout(self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0])
if not self.normalize_before:
x = self.norm1(x)
if self.src_attn is not None:
residual = x
if self.normalize_before:
x = self.norm2(x)
x = residual + self.dropout(
self.src_attn(x, memory, memory, memory_mask)[0]
)
if not self.normalize_before:
x = self.norm2(x)
residual = x
if self.normalize_before:
x = self.norm3(x)
x = residual + self.dropout(self.feed_forward(x))
if not self.normalize_before:
x = self.norm3(x)
if cache is not None:
x = torch.cat([cache, x], dim=1)
return x, tgt_mask, memory, memory_mask