Spaces:
Running
on
Zero
Running
on
Zero
Hecheng0625
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -19,9 +19,23 @@ from models.tts.maskgct.g2p.g2p_generation import g2p, chn_eng_g2p
|
|
19 |
|
20 |
from transformers import SeamlessM4TFeatureExtractor
|
21 |
|
|
|
|
|
22 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
23 |
|
24 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
def g2p_(text, language):
|
@@ -281,6 +295,9 @@ def maskgct_inference(
|
|
281 |
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
282 |
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
283 |
|
|
|
|
|
|
|
284 |
combine_semantic_code, _ = text2semantic(
|
285 |
device,
|
286 |
speech_16k,
|
@@ -352,7 +369,7 @@ iface = gr.Interface(
|
|
352 |
fn=inference,
|
353 |
inputs=[
|
354 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
355 |
-
gr.Textbox(label="Prompt Text"),
|
356 |
gr.Textbox(label="Target Text"),
|
357 |
gr.Number(
|
358 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|
|
|
19 |
|
20 |
from transformers import SeamlessM4TFeatureExtractor
|
21 |
|
22 |
+
import whisperx
|
23 |
+
|
24 |
processor = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
|
25 |
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "CPU")
|
27 |
+
|
28 |
+
whisper_model = whisperx.load_model("small", "cuda", compute_type="int8")
|
29 |
+
|
30 |
+
@torch.no_grad()
|
31 |
+
def get_prompt_text(speech_16k):
|
32 |
+
asr_result = whisper_model.transcribe(speech_16k)
|
33 |
+
print("asr_result:", asr_result)
|
34 |
+
language = asr_result["language"]
|
35 |
+
#text = asr_result["text"] # whisper asr result
|
36 |
+
text = asr_result["segments"][0]["text"]
|
37 |
+
print("prompt text:", text)
|
38 |
+
return text, language
|
39 |
|
40 |
|
41 |
def g2p_(text, language):
|
|
|
295 |
speech_16k = librosa.load(prompt_speech_path, sr=16000)[0]
|
296 |
speech = librosa.load(prompt_speech_path, sr=24000)[0]
|
297 |
|
298 |
+
if prompt_text is None:
|
299 |
+
prompt_text, language = get_prompt_text(prompt_speech_path)
|
300 |
+
|
301 |
combine_semantic_code, _ = text2semantic(
|
302 |
device,
|
303 |
speech_16k,
|
|
|
369 |
fn=inference,
|
370 |
inputs=[
|
371 |
gr.Audio(label="Upload Prompt Wav", type="filepath"),
|
372 |
+
gr.Textbox(label="Prompt Text, if None, the system will use an ASR model to detect prompt text and prompt language.", value=None),
|
373 |
gr.Textbox(label="Target Text"),
|
374 |
gr.Number(
|
375 |
label="Target Duration (in seconds), if the target duration is less than 0, the system will estimate a duration.", value=-1
|