File size: 11,706 Bytes
77ab023 835d0a5 15e129d 52a5d9f 835d0a5 15e129d 4e2bd19 835d0a5 190123d 5ef372e 190123d 835d0a5 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5ef372e 15e129d 5af06fb 15e129d 5ef372e 15e129d 835d0a5 27563dc 835d0a5 27563dc e7041c1 88ed67a 27563dc 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 8323cf6 835d0a5 8323cf6 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 835d0a5 5ef372e 8323cf6 835d0a5 5ef372e 835d0a5 5ef372e 835d0a5 15e129d 835d0a5 8323cf6 15e129d 376405e 835d0a5 a701f1a 88ed67a 835d0a5 8323cf6 835d0a5 15e129d 835d0a5 27563dc 835d0a5 4e2bd19 835d0a5 4e2bd19 835d0a5 4e2bd19 835d0a5 8323cf6 835d0a5 9087bbc 835d0a5 15e129d 835d0a5 15e129d 835d0a5 4e2bd19 835d0a5 4e2bd19 835d0a5 4e2bd19 835d0a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
from urllib.parse import quote
import gradio as gr
import numpy as np
import urllib3
from bs4 import BeautifulSoup
from datasets import load_dataset
from huggingface_hub import (
CommitOperationAdd,
EvalResult,
ModelCard,
RepoUrl,
create_commit,
)
from huggingface_hub.repocard_data import eval_results_to_model_index
from pytablewriter import MarkdownTableWriter
COMMIT_DESCRIPTION = """This is an automated PR created with [this space](https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard)!
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
Please report any issues here: https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard/discussions"""
# Keys are named after the backend keys
# https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard/blob/main/backend/README.md#leaderboard
KEY_IFEVAL = "IFEval"
KEY_BBH = "BBH"
KEY_MATH = "MATH Lvl 5"
KEY_GPQA = "GPQA"
KEY_MUSR = "MUSR"
KEY_MMLU = "MMLU-PRO"
def normalize_within_range(value, lower_bound=0, higher_bound=1):
return (np.clip(value - lower_bound, 0, None)) / (higher_bound - lower_bound) * 100
def calculate_results(repo: str, pool: urllib3.PoolManager):
try:
base_url = f"https://huggingface.co/datasets/open-llm-leaderboard/results/tree/main/{repo}"
html = pool.request("GET", base_url).data
soup = BeautifulSoup(html, "html.parser")
dl_link = soup.find_all(title="Download file")[-1]["href"]
data = pool.request("GET", f"https://huggingface.co{dl_link}").json()
del base_url
del html
del soup
del dl_link
precision = data["config"]["model_dtype"]
revision = data["config"]["model_revision"]
# Normalize BBH subtasks scores
bbh_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_bbh"]:
num_choices = len(data["configs"][subtask_key]["doc_to_choice"])
if subtask_key in data["results"]:
bbh_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(bbh_raw_score, lower_bound, 1.0)
bbh_scores.append(normalized_score)
# Average BBH score
bbh_score = sum(bbh_scores) / len(bbh_scores)
bbh_score = float(round(bbh_score, 2))
# Calculate the MATH score
math_raw_score = data["results"]["leaderboard_math_hard"]["exact_match,none"]
math_score = normalize_within_range(math_raw_score, 0, 1.0)
math_score = float(round(math_score, 2))
# Normalize GPQA scores
gpqa_raw_score = data["results"]["leaderboard_gpqa"]["acc_norm,none"]
gpqa_score = normalize_within_range(gpqa_raw_score, 0.25, 1.0)
gpqa_score = float(round(gpqa_score, 2))
# Normalize MMLU PRO scores
mmlu_raw_score = data["results"]["leaderboard_mmlu_pro"]["acc,none"]
mmlu_score = normalize_within_range(mmlu_raw_score, 0.1, 1.0)
mmlu_score = float(round(mmlu_score, 2))
# Compute IFEval
ifeval_inst_score = (
data["results"]["leaderboard_ifeval"]["inst_level_strict_acc,none"] * 100
)
ifeval_prompt_score = (
data["results"]["leaderboard_ifeval"]["prompt_level_strict_acc,none"] * 100
)
# Average IFEval scores
ifeval_score = (ifeval_inst_score + ifeval_prompt_score) / 2
ifeval_score = float(round(ifeval_score, 2))
# Normalize MUSR scores
musr_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_musr"]:
subtask_config = data["configs"][subtask_key]
dataset = load_dataset(subtask_config["dataset_path"], split=subtask_config["test_split"])
num_choices = max(len(eval(question["choices"])) for question in dataset)
musr_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(musr_raw_score, lower_bound, 1.0)
musr_scores.append(normalized_score)
del dataset
musr_score = sum(musr_scores) / len(musr_scores)
musr_score = float(round(musr_score, 2))
# Calculate overall score
average_score = (
bbh_score + math_score + gpqa_score + mmlu_score + musr_score + ifeval_score
) / 6
average_score = float(round(average_score, 2))
results = {
"Model": repo,
"Precision": precision,
"Revision": revision,
"Average": average_score,
KEY_IFEVAL: ifeval_score,
KEY_BBH: bbh_score,
KEY_MATH: math_score,
KEY_GPQA: gpqa_score,
KEY_MUSR: musr_score,
KEY_MMLU: mmlu_score,
}
# pprint(results, sort_dicts=False)
return results
except Exception: # likely will be from no results being available
return None
def get_details_url(repo: str):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"
def get_contents_url(repo: str):
param = quote(repo, safe="")
return f"https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q={param}&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc"
def get_query_url(repo: str):
param = quote(repo, safe="")
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search={param}"
def get_task_summary(results):
return {
KEY_IFEVAL: {
"dataset_type": "wis-k/instruction-following-eval",
"dataset_name": "IFEval (0-Shot)",
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
"metric_value": results[KEY_IFEVAL],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "averaged accuracy",
},
KEY_BBH: {
"dataset_type": "SaylorTwift/bbh",
"dataset_name": "BBH (3-Shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_BBH],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 3},
"metric_name": "normalized accuracy",
},
KEY_MATH: {
"dataset_type": "lighteval/MATH-Hard",
"dataset_name": "MATH Lvl 5 (4-Shot)",
"metric_type": "exact_match",
"metric_value": results[KEY_MATH],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 4},
"metric_name": "exact match",
},
KEY_GPQA: {
"dataset_type": "Idavidrein/gpqa",
"dataset_name": "GPQA (0-shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_GPQA],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
KEY_MUSR: {
"dataset_type": "TAUR-Lab/MuSR",
"dataset_name": "MuSR (0-shot)",
"metric_type": "acc_norm",
"metric_value": results[KEY_MUSR],
"dataset_config": None,
"dataset_split": None, # three test splits
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
KEY_MMLU: {
"dataset_type": "TIGER-Lab/MMLU-Pro",
"dataset_name": "MMLU-PRO (5-shot)",
"metric_type": "acc",
"metric_value": results[KEY_MMLU],
"dataset_config": "main",
"dataset_split": "test",
"dataset_args": {"num_few_shot": 5},
"metric_name": "accuracy",
},
}
def get_eval_results(repo: str, results: dict):
task_summary = get_task_summary(results)
table = MarkdownTableWriter()
table.headers = ["Metric", "Value (%)"]
table.value_matrix = [["**Average**", results["Average"]]] + [
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
]
text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})!
Summarized results can be found [here]({get_contents_url(repo)})!
{table.dumps()}
"""
return text
def get_edited_yaml_readme(repo: str, results: dict, token: str | None):
card = ModelCard.load(repo, token=token)
common = {
"task_type": "text-generation",
"task_name": "Text Generation",
"source_name": "Open LLM Leaderboard",
"source_url": get_query_url(repo),
}
tasks_results = get_task_summary(results)
if not card.data[
"eval_results"
]: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(
repo.split("/")[1],
[EvalResult(**task, **common) for task in tasks_results.values()],
)
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(
result.is_equal_except_value(cur_result)
for result in card.data["eval_results"]
):
continue
card.data["eval_results"].append(cur_result)
return str(card)
def commit(
repo,
pr_number=None, # specify pr number if you want to edit it
message="Adding Evaluation Results",
oauth_token: gr.OAuthToken | None = None,
):
if not oauth_token:
raise gr.Warning("You are not logged in. Click on 'Sign in with Huggingface' to log in.")
else:
token = oauth_token
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception as e:
raise gr.Error(f"Not a valid repo id: {str(repo)}") from e
with urllib3.PoolManager() as pool:
results = calculate_results(repo, pool)
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(
repo, results, token=token
) + get_eval_results(repo, results)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(repo, results, token=token)
else:
print(f"Something went wrong: {e}")
ops = [
CommitOperationAdd(
path_in_repo="README.md", path_or_fileobj=readme_text.encode()
)
]
commit = create_commit(
repo_id=repo,
token=token,
operations=ops,
commit_message=message,
commit_description=COMMIT_DESCRIPTION,
repo_type="model",
**edited,
).pr_url
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e
|