T145's picture
Calculate results directly from the source
15e129d
raw
history blame
11.5 kB
import gradio as gr
import numpy as np
import urllib3
from bs4 import BeautifulSoup
from datasets import load_dataset
from huggingface_hub import (
CommitOperationAdd,
EvalResult,
ModelCard,
RepoUrl,
create_commit,
)
from huggingface_hub.repocard_data import eval_results_to_model_index
from pytablewriter import MarkdownTableWriter
COMMIT_DESCRIPTION = """This is an automated PR created with [this space](https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard)!
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
Please report any issues here: https://huggingface.co/spaces/T145/open-llm-leaderboard-results-to-modelcard/discussions"""
def normalize_within_range(value, lower_bound=0, higher_bound=1):
return (np.clip(value - lower_bound, 0, None)) / (higher_bound - lower_bound) * 100
def calculate_results(repo: str, pool: urllib3.PoolManager):
try:
base_url = f"https://huggingface.co/datasets/open-llm-leaderboard/results/tree/main/{repo}"
html = pool.request("GET", base_url).data
soup = BeautifulSoup(html, "html.parser")
dl_link = soup.find_all(title="Download file")[-1]["href"]
data = pool.request("GET", f"https://huggingface.co{dl_link}").json()
del base_url
del html
del soup
del dl_link
model_name = data["model_name"]
precision = data["config"]["model_dtype"]
revision = data["config"]["model_revision"]
# Normalize BBH subtasks scores
bbh_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_bbh"]:
num_choices = len(data["configs"][subtask_key]["doc_to_choice"])
if subtask_key in data["results"]:
bbh_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(bbh_raw_score, lower_bound, 1.0)
bbh_scores.append(normalized_score)
# Average BBH score
bbh_score = sum(bbh_scores) / len(bbh_scores)
# Calculate the MATH score
math_raw_score = data["results"]["leaderboard_math_hard"]["exact_match,none"]
math_score = normalize_within_range(math_raw_score, 0, 1.0)
# Normalize GPQA scores
gpqa_raw_score = data["results"]["leaderboard_gpqa"]["acc_norm,none"]
gpqa_score = normalize_within_range(gpqa_raw_score, 0.25, 1.0)
# Normalize MMLU PRO scores
mmlu_pro_raw_score = data["results"]["leaderboard_mmlu_pro"]["acc,none"]
mmlu_pro_score = normalize_within_range(mmlu_pro_raw_score, 0.1, 1.0)
# Compute IFEval
ifeval_inst_score = (
data["results"]["leaderboard_ifeval"]["inst_level_strict_acc,none"] * 100
)
ifeval_prompt_score = (
data["results"]["leaderboard_ifeval"]["prompt_level_strict_acc,none"] * 100
)
# Average IFEval scores
ifeval_score = (ifeval_inst_score + ifeval_prompt_score) / 2
# Normalize MUSR scores
musr_scores = []
for subtask_key in data["group_subtasks"]["leaderboard_musr"]:
subtask_config = data["configs"][subtask_key]
dataset = load_dataset(subtask_config["dataset_path"], split=subtask_config["test_split"])
num_choices = max(len(eval(question["choices"])) for question in dataset)
musr_raw_score = data["results"][subtask_key]["acc_norm,none"]
lower_bound = 1 / num_choices
normalized_score = normalize_within_range(musr_raw_score, lower_bound, 1.0)
musr_scores.append(normalized_score)
del dataset
musr_score = sum(musr_scores) / len(musr_scores)
# Calculate overall score
overall_score = (
bbh_score + math_score + gpqa_score + mmlu_pro_score + musr_score + ifeval_score
) / 6
# Round all scores to 2 decimal places
bbh_score = float(round(bbh_score, 2))
math_score = float(round(math_score, 2))
gpqa_score = float(round(gpqa_score, 2))
mmlu_pro_score = float(round(mmlu_pro_score, 2))
musr_score = float(round(musr_score, 2))
ifeval_score = float(round(ifeval_score, 2))
overall_score = float(round(overall_score, 2))
results = {
"Model": model_name,
"Precision": precision,
"Revision": revision,
"Average": overall_score,
"IFEval": ifeval_score,
"BBH": bbh_score,
"MATH Lvl 5": math_score,
"GPQA": gpqa_score,
"MUSR": musr_score,
"MMLU-PRO": mmlu_pro_score,
}
# pprint(results, sort_dicts=False)
return results
except Exception: # likely will be from no results being available
return None
def get_details_url(repo):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"
def get_contents_url(repo):
return f"https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q={repo}"
def get_query_url(repo):
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"
def get_task_summary(results):
return {
"IFEval": {
"dataset_type": "wis-k/instruction-following-eval",
"dataset_name": "IFEval (0-Shot)",
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
"metric_value": results["IFEval"],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "averaged accuracy",
},
"BBH": {
"dataset_type": "SaylorTwift/bbh",
"dataset_name": "BBH (3-Shot)",
"metric_type": "acc_norm",
"metric_value": results["BBH"],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 3},
"metric_name": "normalized accuracy",
},
"MATH Lvl 5": {
"dataset_type": "lighteval/MATH-Hard",
"dataset_name": "MATH Lvl 5 (4-Shot)",
"metric_type": "exact_match",
"metric_value": results["MATH Lvl 5"],
"dataset_config": None,
"dataset_split": "test",
"dataset_args": {"num_few_shot": 4},
"metric_name": "exact match",
},
"GPQA": {
"dataset_type": "Idavidrein/gpqa",
"dataset_name": "GPQA (0-shot)",
"metric_type": "acc_norm",
"metric_value": results["GPQA"],
"dataset_config": None,
"dataset_split": "train",
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
"MuSR": {
"dataset_type": "TAUR-Lab/MuSR",
"dataset_name": "MuSR (0-shot)",
"metric_type": "acc_norm",
"metric_value": results["MUSR"],
"dataset_config": None,
"dataset_split": None, # three test splits
"dataset_args": {"num_few_shot": 0},
"metric_name": "acc_norm",
},
"MMLU-PRO": {
"dataset_type": "TIGER-Lab/MMLU-Pro",
"dataset_name": "MMLU-PRO (5-shot)",
"metric_type": "acc",
"metric_value": results["MMLU-PRO"],
"dataset_config": "main",
"dataset_split": "test",
"dataset_args": {"num_few_shot": 5},
"metric_name": "accuracy",
},
}
def get_eval_results(repo: str, results: dict):
task_summary = get_task_summary(results)
table = MarkdownTableWriter()
table.headers = ["Metric", "Value (%)"]
table.value_matrix = [["**Average**", f"**{results["Average"]}**"]] + [
[v["dataset_name"], v["metric_value"]] for v in task_summary.values()
]
text = f"""# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})!
Summarized results can be found [here]({get_contents_url(repo)})!
{table.dumps()}
"""
return text
def get_edited_yaml_readme(repo: str, results: dict, token: str | None):
card = ModelCard.load(repo, token=token)
common = {
"task_type": "text-generation",
"task_name": "Text Generation",
"source_name": "Open LLM Leaderboard",
"source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search={repo.replace("/", "%2F")}",
}
tasks_results = get_task_summary(results)
if not card.data[
"eval_results"
]: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(
repo.split("/")[1],
[EvalResult(**task, **common) for task in tasks_results.values()],
)
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(
result.is_equal_except_value(cur_result)
for result in card.data["eval_results"]
):
continue
card.data["eval_results"].append(cur_result)
return str(card)
def commit(
repo,
pr_number=None, # specify pr number if you want to edit it
message="Adding Evaluation Results",
oauth_token: gr.OAuthToken | None = None,
):
if not oauth_token:
raise gr.Warning("You are not logged in. Click on 'Sign in with Huggingface' to log in.")
else:
token = oauth_token
with urllib3.PoolManager() as pool:
results = calculate_results(repo, pool)
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception as e:
raise gr.Error(f"Not a valid repo id: {str(repo)}") from e
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(
repo, results, token=token
) + get_eval_results(repo, results)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(repo, results, token=token)
else:
print(f"Something went wrong: {e}")
ops = [
CommitOperationAdd(
path_in_repo="README.md", path_or_fileobj=readme_text.encode()
)
]
commit = create_commit(
repo_id=repo,
token=token,
operations=ops,
commit_message=message,
commit_description=COMMIT_DESCRIPTION,
repo_type="model",
**edited,
).pr_url
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e